一元线性回归预测法

王朝百科·作者佚名  2010-03-11
窄屏简体版  字體: |||超大  

一元线性回归预测模型(Unary Linear Regression Model)

一元线性回归预测法的概念一元线性回归预测法是分析一个因变量与一个自变量之间的线性关系的预测方法。 常用统计指标:平均数、增减量、平均增减量。

一元线性回归预测基本思想确定直线的方法是最小二乘法 最小二乘法的基本思想:最有代表性的直线应该是直线到各点的距离最近。然后用这条直线进行预测。

一元线性回归预测模型的建立1、选取一元线性回归模型的变量 ;

2、绘制计算表和拟合散点图 ;

3、计算变量间的回归系数及其相关的显著性 ;

4、回归分析结果的应用 。

模型的检验1、经济意义检验:就是根据模型中各个参数的经济含义,分析各参数的值是否与分析对象的经济含义相符。

2、回归标准差检验

3、拟合优度检验

4、回归系数的显著性检验

利用回归预测模型进行预测可以分为:点预测和置信区间预测法

1、点预测法:将自变量取值带入回归预测模型求出因变量的预测值。

2、置信区间预测法:估计一个范围,并确定该范围出现的概率。置信区间的大小的影响的因素:a、因变量估计值;b、回归标准差;C、概率度t。

 
 
 
免责声明:本文为网络用户发布,其观点仅代表作者个人观点,与本站无关,本站仅提供信息存储服务。文中陈述内容未经本站证实,其真实性、完整性、及时性本站不作任何保证或承诺,请读者仅作参考,并请自行核实相关内容。
 
 
© 2005- 王朝網路 版權所有 導航