图像融合是指将多源遥感图像按照一定的算法,在规定的地理坐标系,生成新的图像的过程。
图像融合(Image Fusion)技术是指将多源信道所采集到的关于同一目标的图像经过一定的图像处理,提取各自信道的信息,最后综合成同一图像以供观察或进一步处理。
高效的图像融合方法可以根据需要综合处理多源通道的信息,从而有效地提高了图像信息的利用率、系统对目标探测识别地可靠性及系统的自动化程度。其目的是将单一传感器的多波段信息或不同类传感器所提供的信息加以综合,消除多传感器信息之间可能存在的冗余和矛盾,以增强影像中信息透明度,改善解译的精度、可靠性以及使用率,以形成对目标的清晰、完整、准确的信息描述。
这诸多方面的优点使得图像融合在医学、遥感、计算机视觉、气象预报及军事目标识别等方面的应用潜力得到充分认识、尤其在计算机视觉方面,图像融合被认为是克服目前某些难点的技术方向;在航天、航空多种运载平台上,各种遥感器所获得的大量光谱遥感图像(其中分辨率差别、灰度等级差别可能很大)的复合融合,为信息的高效提取提供了良好的处理手段,取得明显效益。
一般情况下,图像融合由低到高分为三个层次:数据级融合、特征级融合、决策级融合。数据级融合也称像素级融合,是指直接对传感器采集来得数据进行处理而获得融合图像的过程,它是高层次图像融合的基础,也是目前图像融合研究的重点之一。这种融合的优点是保持尽可能多得现场原始数据,提供其它融合层次所不能提供的细微信息。
像素级融合中有空间域算法和变换域算法,空间域算法中又有多种融合规则方法,如逻辑滤波法,灰度加权平均法,对比调制法等;变换域中又有金字塔分解融合法,小波变换法。其中的小波变换是当前最重要,最常用的方法。
在特征级融合中,保证不同图像包含信息的特征,如红外光对于对象热量的表征,可见光对于对象亮度的表征等等。
决策级融合主要在于主观的要求,同样也有一些规则,如贝叶斯法,D-S证据法和表决法等。
融合算法常结合图像的平均值、熵值、标准偏差、平均梯度;平均梯度反映了图像中的微小细节反差与纹理变化特征,同时也反映了图像的清晰度。目前对图像融合存在两个问题:最佳小波基函数的选取和最佳小波分解层数的选取。