recursive estimation algorithm
利用时刻t上的参数估计、存储向量与时刻 t+1上测量的输入和输出值u(t+1)和y(t+1)计算新参数值(t+1),再根据(t+1)计算出新参数值(t+2),直到获得满意的参数值为止。这种算法的每一步计算量都比较小,能够使用小型计算机进行离线或在线参数估计,可以估计时变参数,也可以实时估计适应控制器的参数(见适应控制系统)。20世纪60年代,递推估计算法得到迅速发展,到了70年代产生了许多不同的方法,例如,有离线方法的各种变形、卡尔曼滤波法、随机逼近方法和模型参考适应参数递推估计法等。