迪基-福勒检验

王朝百科·作者佚名  2010-04-07
窄屏简体版  字體: |||超大  

在统计学里,迪基-福勒检验(Dickey-Fuller test)可以测试一个自回归模型是否存在单位根(unit root)。迪基-福勒检验模式是D. A 迪基和W. A 福勒建立的。

解释

一个简单的AR(1)模型是。是要检验的变量,t是时间,ρ是系数,ut 是误差项。 如果则说明单位根是存在的。

回归模型可以写为Δyt = (ρ − 1)yt − 1 + ut = δyt − 1 + ut ,Δ是一阶差分。测试是否存在单位根等同于测试是否δ = 0。因为迪基-福勒检验测试的是残差项,并非原始数据,所以不能用标准t 统计量。我们需要用迪基-福勒统计量。

迪基-福勒检验还可以扩展为增广迪基-福勒检验(Augmented Dickey-Fuller test),简称ADF检验。 ADF检验和迪基-福勒检验类似,但ADF检验的好处在于它排除了自相关的影响。

 
 
 
免责声明:本文为网络用户发布,其观点仅代表作者个人观点,与本站无关,本站仅提供信息存储服务。文中陈述内容未经本站证实,其真实性、完整性、及时性本站不作任何保证或承诺,请读者仅作参考,并请自行核实相关内容。
 
 
© 2005- 王朝網路 版權所有 導航