卡当公式
三次方程解法被称为“卡尔达诺公式”或“卡当公式”流传开来.卡尔达诺公布的解法可简述如下:
方程
x^3+px=q(p,q为正数). (1)
卡尔达诺以方程x3+6x=20为例说明这一方法,他得到的解是x=过同样的程序得到他还求出x^3+px+q=0和x^3+q=px(p,q为正数)的公式解,就是说他已经能解任何形式的三次方程了.毫无疑问,这里包含了塔尔塔利亚的工作.但需要说明的是,他们像当时其他数学家一样,解方程只求正根,所以解法还是不完善的.管会受到多大的良心的责备”,把这两个根相乘,会得25-(-15)=40.于是他写道:“算术就是这样神秘地搞下去的,它的目标,正如常言所说,是又精致又不中用的.”他既承认负数有平方根,又怀疑它的合法性,因此称它为“诡变量”.但不管怎样,虚数毕竟在卡尔达诺那里诞生了.他还进一步指出,方程(指实系数方程)的虚根是成对出现的.
三次方程成功地解出之后,卡尔达诺的学生费拉里(L.Ferrari,1522—1565)受到启发,很快解出了四次方程,解法也发表在卡尔达诺《大术》中.下面用现代符号表出.
设方程为x^4+bx^3+cx^2+dx+e=0. (4)
移项,得x^4+bx^3=-cx^2-dx-e,
右边为x的二次三项式,若判别式为0,则可配成x的完全平方.解这个三次方程,设它的一个根为y0,代入(5),由于两边都是x的完全平方形式,取平方根,即得
解这两个关于x的二次方程,便可得到(4)的四个根.显然,若把(6)的其他根代入(5),会得出不同的方程,但结果是一样的.
在卡尔达诺之后,韦达对三次方程和四次方程解法作了进一步改进.1591年发表的《分析术引论》(Inartemanalyticemisagoge)中,他是这样解三次方程的:
对于 x3+bx^2+cx+d=0,
结果得到简约三次方程
y^3+py+q=0 他和卡尔达诺一样,只考虑方程的正根.
韦达不仅研究方程解法,还努力寻找方程的根与系数的关系,在《论方程的识别与修正》(Deaequationumrecog-nitoneetemendatjone,写于1591年,出版于1615年)中,他提出了四个定理,后人为了纪念这位大数学家,称之为韦达定理.二次方程的韦达定理是我们经常使用的,就
对方程理论作出重要贡献的另一位数学家是笛卡儿.他承认方程的负根,并研究了多项式方程的正根和负根个数的规律,得到著名的笛卡儿符号法则:多项式方程f(x)=0的正根个数等于方程系数的变号次数,或比此数少一正偶数;负根个数等于f(-x)的系数的变号次数,或少于此数一个正偶数.在这里,m重根是看作m个根的.实际上,正根个数和负根个数都可表成n-2p的形式,其中n是f(x)或f(-x)的系数变号次数,p为0,1,2…,p的取值要使n-2p非负.笛卡儿还研究了方程的根的个数同方程次数的关系,认为n次方程至多有n个根.在讨论三次方程时,他得到如下结论:若一有理系数三次方程有一个有理根,则此方程可表为有理系数因子的乘积.他的另一项重要成果是现今所谓因子定理:f(x)能为(x-a)整除(a>0),当且仅当a是f(x)=0的一个根,所有这些成就都是在笛卡儿《方法论》(DiscoursdelaMéthod,1637)的附录《几何》(LaGéometrie)中出现的.
除了方程以外,二项式定理的发现也在代数史上占有一席之地.实际上,指数为正整数的二项式定理(即(a+b)n在n为正整数时的展开式)曾被不同民族多次独立发现.11世纪的中国人贾宪和15世纪的阿拉伯数学家卡西(al-Kāshī)各自得到如下形式的三角形
这个三角形特点是,左右两行的数都是1,中间每个数为肩上两数之和.
在欧洲,德国数学家阿皮安努斯(P.Apianus,1495—1552)最早给出这个三角形(1527年),1544年左右,施蒂费尔引入“二项式系数”这个名称,并指出怎样从(1+a)n-1来计算(1+a)n.1653年,帕斯卡写成《算术三角形》(Traitédutrianglearithmétique)一书,从上述三角形出发,详细讨论了二项展开式的系数.该书于1665年出版后,影响很大.由于帕斯卡在数学界的威望,人们习惯地称此三角形为帕斯卡三角形.实际上,他的功绩主要是通过组合公式给出了二项式系数,即牛顿(T.Newton,1643—1727)进一步认识到,这个公式不仅适用于指数为正整数的二项展开式,而且当指数为分数或负数时,同样适用.他把二项式定理推广到分指数和负指数的情形,指出这三种形式的二项展开式第1项都是1,后面各项系数及字母指数也具有相同的变化规律:设n,m为正整数,则三次方程解法被称为“卡尔达诺公式”或“卡当公式”流传开来.卡尔达诺公布的解法可简述如下:
方程
x^3+px=q(p,q为正数). (1)
卡尔达诺以方程x^3+6x=20为例说明这一方法,他得到的解是x=过同样的程序得到他还求出x^3+px+q=0和x^3+q=px(p,q为正数)的公式解,就是说他已经能解任何形式的三次方程了.毫无疑问,这里包含了塔尔塔利亚的工作.但需要说明的是,他们像当时其他数学家一样,解方程只求正根,所以解法还是不完善的.管会受到多大的良心的责备”,把这两个根相乘,会得25-(-15)=40.于是他写道:“算术就是这样神秘地搞下去的,它的目标,正如常言所说,是又精致又不中用的.”他既承认负数有平方根,又怀疑它的合法性,因此称它为“诡变量”.但不管怎样,虚数毕竟在卡尔达诺那里诞生了.他还进一步指出,方程(指实系数方程)的虚根是成对出现的.
三次方程成功地解出之后,卡尔达诺的学生费拉里(L.Ferrari,1522—1565)受到启发,很快解出了四次方程,解法也发表在卡尔达诺《大术》中.下面用现代符号表出.
设方程为x^4+bx^3+cx^2+dx+e=0. (4)
移项,得x^4+bx^3=-cx^2-dx-e,
右边为x的二次三项式,若判别式为0,则可配成x的完全平方.解这个三次方程,设它的一个根为y0,代入(5),由于两边都是x的完全平方形式,取平方根,即得
解这两个关于x的二次方程,便可得到(4)的四个根.显然,若把(6)的其他根代入(5),会得出不同的方程,但结果是一样的.
在卡尔达诺之后,韦达对三次方程和四次方程解法作了进一步改进.1591年发表的《分析术引论》(Inartemanalyticemisagoge)中,他是这样解三次方程的:
对于 x^3+bx^2+cx+d=0,
结果得到简约三次方程
y^3+py+q=0 他和卡尔达诺一样,只考虑方程的正根.
韦达不仅研究方程解法,还努力寻找方程的根与系数的关系,在《论方程的识别与修正》(Deaequationumrecog-nitoneetemendatjone,写于1591年,出版于1615年)中,他提出了四个定理,后人为了纪念这位大数学家,称之为韦达定理.二次方程的韦达定理是我们经常使用的,就
对方程理论作出重要贡献的另一位数学家是笛卡儿.他承认方程的负根,并研究了多项式方程的正根和负根个数的规律,得到著名的笛卡儿符号法则:多项式方程f(x)=0的正根个数等于方程系数的变号次数,或比此数少一正偶数;负根个数等于f(-x)的系数的变号次数,或少于此数一个正偶数.在这里,m重根是看作m个根的.实际上,正根个数和负根个数都可表成n-2p的形式,其中n是f(x)或f(-x)的系数变号次数,p为0,1,2…,p的取值要使n-2p非负.笛卡儿还研究了方程的根的个数同方程次数的关系,认为n次方程至多有n个根.在讨论三次方程时,他得到如下结论:若一有理系数三次方程有一个有理根,则此方程可表为有理系数因子的乘积.他的另一项重要成果是现今所谓因子定理:f(x)能为(x-a)整除(a>0),当且仅当a是f(x)=0的一个根,所有这些成就都是在笛卡儿《方法论》(DiscoursdelaMéthod,1637)的附录《几何》(LaGéometrie)中出现的.
除了方程以外,二项式定理的发现也在代数史上占有一席之地.实际上,指数为正整数的二项式定理(即(a+b)n在n为正整数时的展开式)曾被不同民族多次独立发现.11世纪的中国人贾宪和15世纪的阿拉伯数学家卡西(al-Kāshī)各自得到如下形式的三角形
这个三角形特点是,左右两行的数都是1,中间每个数为肩上两数之和.
在欧洲,德国数学家阿皮安努斯(P.Apianus,1495—1552)最早给出这个三角形(1527年),1544年左右,施蒂费尔引入“二项式系数”这个名称,并指出怎样从(1+a)n-1来计算(1+a)n.1653年,帕斯卡写成《算术三角形》(Traitédutrianglearithmétique)一书,从上述三角形出发,详细讨论了二项展开式的系数.该书于1665年出版后,影响很大.由于帕斯卡在数学界的威望,人们习惯地称此三角形为帕斯卡三角形.实际上,他的功绩主要是通过组合公式给出了二项式系数,即牛顿(T.Newton,1643—1727)进一步认识到,这个公式不仅适用于指数为正整数的二项展开式,而且当指数为分数或负数时,同样适用.他把二项式定理推广到分指数和负指数的情形,指出这三种形式的二项展开式第1项都是1,后面各项系数及字母指数也具有相同的变化规律:设n,m为正整数