
γ射线暴 γ-ray burst
γ射线暴(Gamma Ray Burst, 缩写GRB),又称γ暴,是来自天空中某一方向的伽玛射线强度在短时间内突然增强,随后又迅速减弱的现象,持续时间在0.1-1000秒,辐射主要集中在0.1-100 MeV的能段。γ射线暴发现于1967年,数十年来,人们对其本质了解得还不很清楚,但基本可以确定是发生在宇宙学尺度上的恒星级天体中的爆发过程。γ射线暴是目前天文学中最活跃的研究领域之一,曾在1997年和1999年两度被美国《科学》杂志评为年度十大科技进展之列。
1 γ射线暴的研究历史20世纪60年代,美国发射了Vela卫星,上面安装有监测伽玛射线的仪器,用于监视苏联和中国进行核试验时产生的大量伽玛射线。1967年,这颗卫星发现了来自宇宙空间的伽玛射线突然增强,随即又快速减弱的现象,这种现象是随机发生的,大约每天发生一到两次,强度可以超过全天γ射线的总和,并且来源不是在地球上,而是宇宙空间。由于保密的原因,关于γ射线暴的首批观测资料直到1973年才发表,并很快得到了苏联Konus卫星的证实。
由于γ射线暴的持续时间非常短暂,而且方向不好确定,起初对伽玛暴的研究进展十分缓慢,连距离这样的基本物理量都难以测定。1980年代,基于Ginga卫星的观测结果,许多人相信伽玛射线暴是发生银河系中的一种现象,成因与中子星有关,并围绕中子星建立起数百个模型。20世纪80年代中期,美籍波兰裔天文学家帕钦斯基提出,γ射线暴发生在银河系外,是位于宇宙学距离上的遥远天体,然而这种观点并没有得到普遍认可。
1991年美国发射了康普顿伽玛射线天文台(CGRO),这颗卫星的八个角上安装了八台同样的仪器BASTE,能够定出γ射线暴的方向,精度大约为几度。几年时间里,对3000余个γ暴的系统巡天发现,γ射线暴在天空中的分布是各向同性的,支持了γ射线暴是发生在遥远的宇宙学尺度上的观点,并且引发了帕钦斯基与另一位持相反观点的科学家拉姆的大辩论。
如果γ射线暴确实位于宇宙学尺度上,那么由它的亮度可以推断,γ暴必定具有非常巨大的能量,往往在几秒时间里释放出的能量就相当于几百个太阳一生中所释放出的能量总和,是人们已知的宇宙中最猛烈的爆发。例如1997年12月14日发生的一次γ暴,距地球120亿光年,在爆发后一两秒内,其亮度就与除它以外的整个宇宙一样明亮,它在50秒内释放出的能量相当于银河系200年的总辐射能量,比超新星爆发还要大几百倍。在它附近的几百千米范围内,再现了宇宙大爆炸后千分之一秒时的高温高密情形。而1999年1月23日发生的一次γ暴比这还要猛烈十倍。
1996年,意大利和荷兰合作发射了BeppoSAX卫星,这颗卫星能够准确地测定vγ射线暴的方位,定位精度约为50角秒,这就为地面上的望远镜在γ暴未消逝之前寻找其光学对应体提供了强有力的支持。在它的帮助下,天文学家们率先发现了1997年2月28日爆发的一个γ暴的光学对应体,称为γ暴的“光学余辉”。后来又陆陆续续地发现了数个类似的余辉,不仅有可见光波段的,也有射电波段,X射线波段,并且还证认出了γ暴的宿主星系。对宿主星系红移的观测证实,γ暴远在银河系以外,是宇宙学距离上的天体。余辉的发现使人们能够在伽玛暴发生后数月甚至数年的时间里对其进行持续观测,大大推动了γ暴的研究。
2 γ射线暴的观测特征γ射线暴的持续时间一般在0.1秒到1000秒左右,以2秒为界,大致可以分为长暴和短暴两类,典型的持续时间分别为30秒和0.3秒。时变的轮廓比较复杂,往往具有多峰的结构。伽玛射线暴在天空中的分布是各向同性的,但远距离的γ射线暴明显少于近距离的,显示出非均匀各向同性,可以被膨胀宇宙学模型所支持,表明γ射线暴是发生在宇宙学距离上的。
γ射线暴爆发过后会在其它波段观测到辐射,称为γ射线暴的余辉。根据波段不同可分为X射线余辉、光学余辉、射电余辉等。余辉通常是随时间而指数式衰减的,X射线余辉能够持续几个星期,光学余辉和射电余辉能够持续几个月到一年。