分享
 
 
 

路线着色谜题

王朝百科·作者佚名  2010-04-13
窄屏简体版  字體: |||超大  

「道路着色问题」(Road Coloring Problem)一九七○年代提出,此后近四十年,许多数学家都试着找出解答,但都无功而返。一位「高龄」六十三岁的以色列数学家却在去年底得出解答,尽管许多人讶异于他的成就,但他自己仍然低调表示,这只是个「数学家的本务」。

近40年来 大热门数学谜题

道路着色问题是由班雅明.怀斯及罗伊.阿德勒提出,原意是找出地图指引及计算机自动除错程序的设计方式,但没想到不但怀斯自己花了八年都无法解答,接下来三十年间一百多位数学家也束手无策。

这个难题的假设是,在出发点(圆点)及道路(直线)的数量都固定的情况下,应该有办法以不同颜色标示道路,让人不管从哪一个点出发,都能到达固定的点。这在真实生活中的情况就像是,不管朋友住在哪里,只要知道你家的位置,绕再远都有办法到你家。

以图为范本(见下图,取自维基百科),如果按照「蓝—红—红、蓝—红—红、蓝—红—红」的方式行走,不管从哪个点出发都能到黄色的点;如果是「蓝—蓝—红、蓝—蓝—红、蓝—蓝—红」,则一定能到绿点

自苏联返以 一度屈就守卫

这个看似简单的问题,最后碰到阿夫拉罕.塔克特曼(见上图,取自网络)才被解开。塔克特曼原居苏联,当时就已经是个小有名气的数学家。苏联瓦解后,他回归以色列,却因工作难找只好当个守卫,几经波折才重拾教鞭,于一九九五年到巴伊兰大学任教。

塔克特曼说,他花了一年才想通问题,去年拿着铅笔涂写八页才写完解答;结论在去年年底获得确认后,终于证明他的成就。但塔克特曼说他是完成了数学家该做的事,很幸运能被认可,他不会因此而被冲昏头。

(图形请点下面wiki维基百科就可以看到道路走法)

http://www.libertytimes.com.tw/2008/new/mar/22/today-int3.htm

道路著色谜题图形请参照取自维基百科点选(英文全文):

In graph theory the road coloring theorem, until recently known as the road coloring conjecture, deals with synchronized instructions. The issue involves whether by using such instructions, one can reach or locate an object or destination from any other point within a network (which might be a representation of city streets or a maze).[1] In the real world, this phenomenon would be as if you called a friend to ask for directions to his house, and he gave you a set of directions that worked no matter where you started from. This theorem also has implications in symbolic dynamics.

The theorem was first conjectured in 1970 by Benjamin Weiss and Roy Adler.[2] It was proved by Avraham Trahtman in September 2007[3].

Example and intuition

The image to the right shows a directed graph on eight vertices in which each vertex has out-degree 2. (Each vertex in this case also has in-degree 2, but that is not necessary for a synchronizing coloring to exist.) The edges of this graph have been colored red and blue to create a synchronizing coloring.

For example, consider the vertex marked in yellow. No matter where in the graph you start, if you traverse all nine edges in the walk "blue-red-red—blue-red-red—blue-red-red", you will end up at the yellow vertex. Similarly, if you traverse all nine edges in the walk "blue-blue-red—blue-blue-red—blue-blue-red", you will always end up at the vertex marked in green, no matter where you started.

The road coloring theorem states that for a certain category of directed graphs, it is always possible to create such a coloring.

http://en.wikipedia.org/wiki/Road_coloring_problem

After 38 years, Israeli solves math code[Road Coloring Problem]

JERUSALEM - A mathematical puzzle that baffled the top minds in the esoteric field of symbolic dynamics for nearly four decades has been cracked — by a 63-year-old immigrant who once had to work as a security guard.

Avraham Trahtman, a mathematician who also toiled as a laborer after moving to Israel from Russia, succeeded where dozens failed, solving the elusive "Road Coloring Problem."

The conjecture essentially assumed it's possible to create a "universal map" that can direct people to arrive at a certain destination, at the same time, regardless of starting point. Experts say the proposition could have real-life applications in mapping and computer science.

The "Road Coloring Problem" was first posed in 1970 by Benjamin Weiss, an Israeli-American mathematician, and a colleague, Roy Adler, who worked at IBM at the time.

For eight years, Weiss tried to prove his theory. Over the next 30 years, some 100 other scientists attempted as well. All failed, until Trahtman came along and, in eight short pages, jotted the solution down in pencil last year.

"The solution is not that complicated. It's hard, but it is not that complicated," Trahtman said in heavily accented Hebrew. "Some people think they need to be complicated. I think they need to be nice and simple."

Weiss said it gave him great joy to see someone solve his problem.

Stuart Margolis, a mathematician who recruited Trahtman to teach at Bar Ilan University near Tel Aviv, called the solution one of the "beautiful results." But he said what makes the result especially remarkable is Trahtman's age and background.

"Math is usually a younger person's game, like music and the arts," Margolis said. "Usually you do your better work in your mid 20s and early 30s. He certainly came up with a good one at age 63."

Adding to the excitement is Trahtman's personal triumph in finally finding work as a mathematician after immigrating from Russia. "The first time I met him he was wearing a night watchman's uniform," Margolis said.

Originally from Yekaterinburg, Russia, Trahtman was an accomplished mathematician when he came to Israel in 1992, at age 48. But like many immigrants in the wave that followed the breakup of the Soviet Union, he struggled to find work in the Jewish state and was forced into stints working maintenance and security before landing a teaching position at Bar Ilan in 1995.

The soft-spoken Trahtman declined to talk about his odyssey, calling that the "old days." He said he felt "lucky" to be recognized for his solution, and played down the achievement as a "matter for mathematicians," saying it hasn't changed him a bit.

The puzzle tackled by Trahtman wasn't the longest-standing open problem to be solved recently. In 1994, British mathematician Andrew Wiles solved Fermat's last theorem, which had been open for more than 300 years.

Trahtman's solution is available on the Internet and is to be published soon in the Israel Journal of Mathematics.

Joel Friedman, a math professor at the University of British Columbia, said probably everyone in the field of symbolic dynamics had tried to solve the problem at some point, including himself. He said people in the related disciplines of graph theory, discrete math and theoretical computer science also tried.

"The solution to this problem has definitely generated excitement in the mathematical community," he said in an e-mail.

Margolis said the solution could have many applications.

"Say you've lost an e-mail and you want to get it back — it would be guaranteed," he said. "Let's say you are lost in a town you have never been in before and you have to get to a friend's house and there are no street signs — the directions will work no matter what."

http://freerepublic.com/focus/f-news/1989209/posts

 
 
 
免责声明:本文为网络用户发布,其观点仅代表作者个人观点,与本站无关,本站仅提供信息存储服务。文中陈述内容未经本站证实,其真实性、完整性、及时性本站不作任何保证或承诺,请读者仅作参考,并请自行核实相关内容。
2023年上半年GDP全球前十五强
 百态   2023-10-24
美众议院议长启动对拜登的弹劾调查
 百态   2023-09-13
上海、济南、武汉等多地出现不明坠落物
 探索   2023-09-06
印度或要将国名改为“巴拉特”
 百态   2023-09-06
男子为女友送行,买票不登机被捕
 百态   2023-08-20
手机地震预警功能怎么开?
 干货   2023-08-06
女子4年卖2套房花700多万做美容:不但没变美脸,面部还出现变形
 百态   2023-08-04
住户一楼被水淹 还冲来8头猪
 百态   2023-07-31
女子体内爬出大量瓜子状活虫
 百态   2023-07-25
地球连续35年收到神秘规律性信号,网友:不要回答!
 探索   2023-07-21
全球镓价格本周大涨27%
 探索   2023-07-09
钱都流向了那些不缺钱的人,苦都留给了能吃苦的人
 探索   2023-07-02
倩女手游刀客魅者强控制(强混乱强眩晕强睡眠)和对应控制抗性的关系
 百态   2020-08-20
美国5月9日最新疫情:美国确诊人数突破131万
 百态   2020-05-09
荷兰政府宣布将集体辞职
 干货   2020-04-30
倩女幽魂手游师徒任务情义春秋猜成语答案逍遥观:鹏程万里
 干货   2019-11-12
倩女幽魂手游师徒任务情义春秋猜成语答案神机营:射石饮羽
 干货   2019-11-12
倩女幽魂手游师徒任务情义春秋猜成语答案昆仑山:拔刀相助
 干货   2019-11-12
倩女幽魂手游师徒任务情义春秋猜成语答案天工阁:鬼斧神工
 干货   2019-11-12
倩女幽魂手游师徒任务情义春秋猜成语答案丝路古道:单枪匹马
 干货   2019-11-12
倩女幽魂手游师徒任务情义春秋猜成语答案镇郊荒野:与虎谋皮
 干货   2019-11-12
倩女幽魂手游师徒任务情义春秋猜成语答案镇郊荒野:李代桃僵
 干货   2019-11-12
倩女幽魂手游师徒任务情义春秋猜成语答案镇郊荒野:指鹿为马
 干货   2019-11-12
倩女幽魂手游师徒任务情义春秋猜成语答案金陵:小鸟依人
 干货   2019-11-12
倩女幽魂手游师徒任务情义春秋猜成语答案金陵:千金买邻
 干货   2019-11-12
 
推荐阅读
 
 
 
>>返回首頁<<
靜靜地坐在廢墟上,四周的荒凉一望無際,忽然覺得,淒涼也很美
© 2005- 王朝網路 版權所有