分享
 
 
 

群体智能

王朝百科·作者佚名  2010-04-14
窄屏简体版  字體: |||超大  

群体智能(Swarm intelligence):

群体智能这个概念来自对自然界中昆虫群体的观察,群居性生物通过协作表现出的宏观智能行为特征被称为群体智能。

群体智能应该遵循五条基本原则:

(1) 邻近原则( Proximity Principle) ,群体能够进行简单的空间和时间计算;

(2) 品质原则(Quality Principle) ,群体能够响应环境中的品质因子;

(3) 多样性反应原则( Principle of Diverse Re2sponse) ,群体的行动范围不应该太窄;

(4) 稳定性原则(Stability Principle) ,群体不应在每次环境变化时都改变自身的行为;

(5) 适应性原则(Adaptability Principle) ,在所需代价不太高的情况下,群体能够在适当的时候改变自身的行为。

群体智能具有如下特点:

(1) 控制是分布式的,不存在中心控制。因而它更能够适应当前网络环境下的工作状态,并且具有较强的鲁棒性,即不会由于某一个或几个个

体出现故障而影响群体对整个问题的求解。

(2) 群体中的每个个体都能够改变环境,这是个体之间间接通信的一种方式,这种方式被称为“激发工作”(Stigmergy) 。由于群体智能可以通过非直接通信的方式进行信息的传输与合作,因而随着个体数目的增加,通信开销的增幅较小,因此,它具有较好的可扩充性。

(3) 群体中每个个体的能力或遵循的行为规则非常简单,因而群体智能的实现比较方便,具有简单性的特点。

(4) 群体表现出来的复杂行为是通过简单个体的交互过程突现出来的智能( Emergent Intelli2gence) ,因此,群体具有自组织性。

英文版.群体智能

作者:(美国)James Kennedy (美国)Russell C Eberhart,Yuhui Shi(史玉回)

市场价:¥75.00

出版社:人民邮电出版社

页码:512 页

出版日期:2009年

ISBN:9787115195500

版本:1版

装帧:平装

开本:16

英语:英语

丛书名:图灵原版计算机科学系列

内容简介群体智能是通过模拟自然界生物群体行为来实现人工智能的一种方法。《群体智能》综合运用认知科学、社会心理学、人工智能和演化计算等学科知识,提供了一些非常有价值的新见解,并将这些见解加以应用,以解决困难的工程问题。书中首先探讨了基础理论,然后详尽展示如何将这些理论和模型应用于新的计算智能方法(粒子群)中,以适应智能系统的行为,最后描述了应用粒子群优化算法的好处,提供了强有力的优化、学习和问题解决的方法。

《群体智能》主要面向计算机相关学科的高年级本科生或研究生以及相关领域的研究与开发技术人员。

作者简介James Kennedy社会心理学家。自1994年起,他一直致力于粒子群算法的研究工作,并与Russell C.Eberhart共同开发了粒子群优化算法。目前在美国劳工部从事调查方法的研究工作。他在计算机科学和社会科学杂志和学报上发表过许多关于粒子群的论文。

RusselI C.Eberhart普度大学电子与计算机工程系主任。IEEE会士。与JamesKennedy共同提出了粒子群优化算法。曾任IEEE神经网络委员会的主席。除了本书之外,他还著有《计算智能:从概念到实现》(影印版由人民邮电出版社出版)等。

Yuhui Shi (史玉回)国际计算智能领域专家,现任Joumal ofSwarm Intellgence编委,IEEE CIS群体智能任务组主席,西交利物浦大学电子与电气工程系教授。1992年获东南大学博士学位,先后在美国、韩国、澳大利亚等地从事研究工作,曾任美国电子资讯系统公司专家长达9年。他还是《计算智能:从概念到实现》一书的作者之一。

媒体推荐“本书内容丰富,富于启发性和思想性,强烈推荐给所有的演进计算研究人员。”

——Genetic Programming and Evolvable'Machines

“这本书极为出色,不愧为PSO和群体智能的最佳参考书:”

——Konstantions E.Parsopoulos 希腊Palras大学

编辑推荐群体智能是近年来发展迅速的人工智能学科领域。通过研究分散、自组织的动物群体和人类社会的智能行为,学者们提出了许多迥异于传统思路的智能算法,很好地解决了不少原来非常棘手的复杂工程问题。与蚁群算法齐名的粒子群优化(particle swarm optimizatiotl,简称PSO)算法就是其中最受瞩目、应用最为广泛的成果之一。

《群体智能》由粒子群优化算法之父撰写,是该领域毋庸置疑的经典著作。作者提出,人类智能来源于社会环境中个体之间的交互,这种智能模型可以有效地应用到人工智能系统中去。书中首先从社会心理学、认知科学和演化计算等多个角度阐述了这种新方法的基础,然后详细说明了应用这些理论和模型所得出的新的计算智能方法——粒子群优化,进而深入地探讨了如何将粒子群优化应用于广泛的工程问题。

《群体智能》的C及ViSLlaI Basic源代码可以在图灵网站(WWW.turingbook.com)《群体智能》网页免费注册下载。

目录part one Foundations

chapter oneModels and Concepts of Life and Intelligence3

The Mechanics of Life and Thought4

Stochastic Adaptation: Is Anything Ever Really Random?9

The “Two Great Stochastic Systems”12

The Game of Life: Emergence in Complex Systems16

The Game of Life17

Emergence18

Cellular Automata and the Edge of Chaos20

Artificial Life in Computer Programs26

Intelligence: Good Minds in People and Machines30

Intelligence in People: The Boring Criterion30

Intelligence in Machines: The Turing Criterion32

chapter twoSymbols, Connections, and Optimization by Trial and Error35

Symbols in Trees and Networks36

Problem Solving and Optimization48

A Super-Simple Optimization Problem49

Three Spaces of Optimization51

Fitness Landscapes52

High-Dimensional Cognitive Space and Word Meanings55

Two Factors of Complexity: NK Landscapes60

Combinatorial Optimization64

Binary Optimization67

Random and Greedy Searches71

Hill Climbing72

Simulated Annealing73

Binary and Gray Coding74

Step Sizes and Granularity75

Optimizing with Real Numbers77

Summary78

chapter threeOn Our Nonexistence as Entities: The Social Organism81

Views of Evolution82

Gaia: The Living Earth83

Differential Selection86

Our Microscopic Masters?91

Looking for the Right Zoom Angle92

Flocks, Herds, Schools, and Swarms: Social Behavior as Optimization94

Accomplishments of the Social Insects98

Optimizing with Simulated Ants: Computational Swarm Intelligence105

Staying Together but Not Colliding: Flocks, Herds, and Schools109

Robot Societies115

Shallow Understanding125

Agency129

Summary131

chapter fourEvolutionary Computation Theory and Paradigms133

Introduction134

Evolutionary Computation History134

The Four Areas of Evolutionary Computation135

Genetic Algorithms135

Evolutionary Programming139

Evolution Strategies140

Genetic Programming141

Toward Unification141

Evolutionary Computation Overview142

EC Paradigm Attributes142

Implementation143

Genetic Algorithms146

An Overview146

A Simple GA Example Problem147

A Review of GA Operations152

Schemata and the Schema Theorem159

Final Comments on Genetic Algorithms163

Evolutionary Programming164

The Evolutionary Programming Procedure165

Finite State Machine Evolution166

Function Optimization169

Final Comments171

Evolution Strategies172

Mutation172

Recombination174

Selection175

Genetic Programming179

Summary185

chapter fiveHumans—Actual, Imagined, and Implied187

Studying Minds188

The Fall of the Behaviorist Empire193

The Cognitive Revolution195

Bandura’s Social Learning Paradigm197

Social Psychology199

Lewin’s Field Theory200

Norms, Conformity, and Social Influence202

Sociocognition205

Simulating Social Influence206

Paradigm Shifts in Cognitive Science210

The Evolution of Cooperation214

Explanatory Coherence216

Networks in Groups218

Culture in Theory and Practice220

Coordination Games223

The El Farol Problem226

Sugarscape229

Tesfatsion’s ACE232

Picker’s Competing-Norms Model233

Latané’s Dynamic Social Impact Theory235

Boyd and Richerson’s Evolutionary Culture Model240

Memetics245

Memetic Algorithms248

Cultural Algorithms253

Convergence of Basic and Applied Research254

Culture—and Life without It255

Summary258

chapter sixThinking Is Social261

Introduction262

Adaptation on Three Levels263

The Adaptive Culture Model263

Axelrod’s Culture Model265

Experiment One: Similarity in Axelrod’s Model267

Experiment Two: Optimization of an Arbitrary Function268

Experiment Three: A Slightly Harder and More Interesting Function269

Experiment Four: A Hard Function271

Experiment Five: Parallel Constraint Satisfaction273

Experiment Six: Symbol Processing279

Discussion282

Summary284

part twoThe Particle Swarm and Collective Intelligence

chapter sevenThe Particle Swarm287

Sociocognitive Underpinnings: Evaluate, Compare, and Imitate288

Evaluate288

Compare288

Imitate289

A Model of Binary Decision289

Testing the Binary Algorithm with the De Jong Test Suite297

No Free Lunch299

Multimodality302

Minds as Parallel Constraint Satisfaction Networks in Cultures307

The Particle Swarm in Continuous Numbers309

The Particle Swarm in Real-Number Space309

Pseudocode for Particle Swarm Optimization in Continuous Numbers313

Implementation Issues314

An Example: Particle Swarm Optimization of Neural Net Weights314

A Real-World Application318

The Hybrid Particle Swarm319

Science as Collaborative Search320

Emergent Culture, Immergent Intelligence323

Summary324

chapter eightVariations and Comparisons327

Variations of the Particle Swarm Paradigm328

Parameter Selection328

Controlling the Explosion337

Particle Interactions342

Neighborhood Topology343

Substituting Cluster Centers for Previous Bests347

Adding Selection to Particle Swarms353

Comparing Inertia Weights and Constriction Factors354

Asymmetric Initialization357

Some Thoughts on Variations359

Are Particle Swarms Really a Kind of Evolutionary Algorithm?361

Evolution beyond Darwin362

Selection and Self-Organization363

Ergodicity: Where Can It Get from Here?366

Convergence of Evolutionary Computation and Particle Swarms367

Summary368

chapter nineApplications369

Evolving Neural Networks with Particle Swarms370

Review of Previous Work370

Advantages and Disadvantages of Previous Approaches374

The Particle Swarm Optimization Implementation Used Here376

Implementing Neural Network Evolution377

An Example Application379

Conclusions381

Human Tremor Analysis382

Data Acquisition Using Actigraphy383

Data Preprocessing385

Analysis with Particle Swarm Optimization386

Summary389

Other Applications389

Computer Numerically Controlled Milling Optimization389

Ingredient Mix Optimization391

Reactive Power and Voltage Control391

Battery Pack State-of-Charge Estimation391

Summary392

chapter tenImplications and Speculations393

Introduction394

Assertions395

Up from Social Learning: Bandura398

Information and Motivation399

Vicarious versus Direct Experience399

The Spread of Influence400

Machine Adaptation401

Learning or Adaptation?402

Cellular Automata403

Down from Culture405

Soft Computing408

Interaction within Small Groups: Group Polarization409

Informational and Normative Social Influence411

Self-Esteem412

Self-Attribution and Social Illusion414

Summary419

chapter elevenAnd in Conclusion . . .421

Appendix A Statistics for Swarmers429

Appendix B Genetic Algorithm Implementation451

Glossary457

References475

Index497

……

序言At this moment a half.dozen astronauts are assembling a new space station hundreds of miles above the surface of the earth.Thousands of sailors live and work under the sea in submarines.Incas iog through theAndes.Nomads roam the Arabian sands.Homo sapiensliterally,“intelli-gent man” has adapted to nearly every environment on the face of theearth.below it,and as far above it as we can propel ourselves.W_e must bedoing something right.In this book we argue that what we do right is related to our socialit.We will investigate that elusive quality known as intelligence,which isconsidered first of all a trait of humans and second as something thatmight be created in a computer,and our conclusion will be that whatever this“intelligence”is。it arises from interactions among individuals.We humans are the most social of animals:we live together in families,tribes.cities,nations,behaving and thinking according to the rules andnorms of our communities,adopting the customs of our fellows,including the facts they believe and the explanations they use to tie those factstogether.Even when we are alone,we think about other people,andeven when we think about inanimate things,we think using language the medium of interpersonal communication.

 
 
 
免责声明:本文为网络用户发布,其观点仅代表作者个人观点,与本站无关,本站仅提供信息存储服务。文中陈述内容未经本站证实,其真实性、完整性、及时性本站不作任何保证或承诺,请读者仅作参考,并请自行核实相关内容。
2023年上半年GDP全球前十五强
 百态   2023-10-24
美众议院议长启动对拜登的弹劾调查
 百态   2023-09-13
上海、济南、武汉等多地出现不明坠落物
 探索   2023-09-06
印度或要将国名改为“巴拉特”
 百态   2023-09-06
男子为女友送行,买票不登机被捕
 百态   2023-08-20
手机地震预警功能怎么开?
 干货   2023-08-06
女子4年卖2套房花700多万做美容:不但没变美脸,面部还出现变形
 百态   2023-08-04
住户一楼被水淹 还冲来8头猪
 百态   2023-07-31
女子体内爬出大量瓜子状活虫
 百态   2023-07-25
地球连续35年收到神秘规律性信号,网友:不要回答!
 探索   2023-07-21
全球镓价格本周大涨27%
 探索   2023-07-09
钱都流向了那些不缺钱的人,苦都留给了能吃苦的人
 探索   2023-07-02
倩女手游刀客魅者强控制(强混乱强眩晕强睡眠)和对应控制抗性的关系
 百态   2020-08-20
美国5月9日最新疫情:美国确诊人数突破131万
 百态   2020-05-09
荷兰政府宣布将集体辞职
 干货   2020-04-30
倩女幽魂手游师徒任务情义春秋猜成语答案逍遥观:鹏程万里
 干货   2019-11-12
倩女幽魂手游师徒任务情义春秋猜成语答案神机营:射石饮羽
 干货   2019-11-12
倩女幽魂手游师徒任务情义春秋猜成语答案昆仑山:拔刀相助
 干货   2019-11-12
倩女幽魂手游师徒任务情义春秋猜成语答案天工阁:鬼斧神工
 干货   2019-11-12
倩女幽魂手游师徒任务情义春秋猜成语答案丝路古道:单枪匹马
 干货   2019-11-12
倩女幽魂手游师徒任务情义春秋猜成语答案镇郊荒野:与虎谋皮
 干货   2019-11-12
倩女幽魂手游师徒任务情义春秋猜成语答案镇郊荒野:李代桃僵
 干货   2019-11-12
倩女幽魂手游师徒任务情义春秋猜成语答案镇郊荒野:指鹿为马
 干货   2019-11-12
倩女幽魂手游师徒任务情义春秋猜成语答案金陵:小鸟依人
 干货   2019-11-12
倩女幽魂手游师徒任务情义春秋猜成语答案金陵:千金买邻
 干货   2019-11-12
 
推荐阅读
 
 
 
>>返回首頁<<
 
靜靜地坐在廢墟上,四周的荒凉一望無際,忽然覺得,淒涼也很美
© 2005- 王朝網路 版權所有