
作者:(美)蔡 著,潘家柱 译
ISBN:10位[711118386X] 13位[9787111183860]
出版社:机械工业出版社
出版日期:2006-4-1
定价:¥39.00 元
内容提要
本书主要介绍了计量经济学和统计学文献中出现的金融计量方法方面的最新进展,强调实例和数据分析。特别是包含当前的研究热点,如风险值、高频数据分析和马尔町夫链蒙特卡罗方法等。主要内容包括:金融时间序列数据的基本特征,神经网络,非线性方法,使用跳跃扩散方程进行衍生产品的定价,采用极值理论计算风险值,带时变相关系数的多元波动率模型,贝叶斯推断。
本书可作为金融等专业高年级本科生或研究生的时间序列分析教材,也可供相关专业研究人员参考。
编辑推荐
本书主要介绍了在计量经济学和统计学文献中出现的金融计量方法言面的最新进展,强调实例和数据分析,特别是包含当前的研究热点,如风险值、高频数据分析的马尔可夫链蒙特卡罗方法等,主要内容包括:金融时间序列数据的基本特征,神经网络,非线性方法,使用跳跃扩散方程进行衍生产品的定价,采用极值理论计算风险值,带时变相关系数的多元波动率模型,贝叶斯推断。
本书可作为金融等专业高年级本科生或研究生的时间序列分析教材,也可供相关专业研究人员参考。
作者简介
Ruey S.Tsay 于美国威斯康星大学麦迪逊分校获得统计学博士学位,美国芝加哥大学商学院研究生院经济计量及统计学的H.G.B.Alexander教授。曾任Journal of Financial Econometrics杂志栏目编辑。
目录
译者序
前言
第1章 金融时间序列及其特征
1.1 资产收益率
1.2 收益率的分布性质
1.2.1 统计分布及其矩的回顾
1.2.2 收益率的分布
1.2.3 多元收益率
1.2.4 收益率的似然函数
1.2.5 收益率的经验性质
1.3 其他过程
练习题
参考文献
第2章 线性时间序列分析及其应用
2.1 平稳性
2.2 相关系数和自相关函数
2.3 白噪声和线性时间序列
2.4 简单的自回归模型
2.4.1 AR模型的性质
2.4.2 实际中怎样识别AR模型
2.4.3 预测
2.5 简单滑动平均模型
2.5.1 MA模型的性质
2.5.2 识别MA的阶
2.5.3 估计
2.5.4 用MA模型预测
2.6 简单的ARMA模型
2.6.1 ARMA(1,1)模型的性质
2.6.2 一般的ARMA模型
2.6.3 识别ARMA模型
2.6.4 用ARMA模型预测
2.6.5 ARMA模型的三种表示
2.7 单位根非平稳性
2.7.1 随机游动
2.7.2 带漂移的随机游动
2.7.3 一般的单位根非平稳模型
2.7.4 单位根检验
2.8 季节模型
2.8.1 季节性差分
2.8.2 多重季节性模型
2.9 带时间序列误差的回归模型
2.10 长记忆模型
附录A 一些SCA的命令
练习题
参考文献
第3章 条件异方差模型
3.1 波动率的特征
3.2 模型的结构
3.3 ARCIt模型
3.3.1 ARCH模型的性质
3.3.2 ARCH模型的缺点
3.3.3 ARCH模型的建立
3.3.4 例子
3.4 GARCH模型
3.4.1 一个例子
3.4.2 预测的评价
3.5 求和GARCH模型
3.6 GARCH—M模型
3.7 指数GARCH模型
3.7.1 实例说明
3.7.2 另一个例子
3.7.3 用EGARCH模型预测
3.8 CHARMA模型
3.9 随机系数的自回归模型
3.10 随机波动率模型
3.11 长记忆随机波动率模型
3.12 另一种方法
3.13 应用
3.14 GARCH模型的峰度
附录A 估计波动率模型的一些RATS程序
练习题
参考文献
第4章 非线性模型及其应用
4.1 非线性模型
4.1.1 双线性模型
4.1.2 门限自回归模型
4.1.3 平滑转移AR模型
4.1.4 马尔可夫转换模型
4.1.5 非参数方法
4.1.6 函数系数AR模型
4.1.7 非线性可加AR模型
4.1.8 非线性状态空间模型
4.1.9 神经网络
4.2 非线性检验
4.2.1 非参数检验
4.2.2 参数检验
4.2.3 应用
4.3 建模
4.4 预测
4.4.1 参数自助法
4.4.2 预测的评估
4.5 应用
附录A 一些关于非线性波动率模型的RATS程序
附录B 神经网络的S-Plus命令
练习题
参考文献
第5章 高频数据分析与市场微观结构
第6章 连续时间模型及其应用
第7章 极值理论、分位数估计与VaR
第8章 多元时间序列分析及其应用
第9章 多元波动率模型及其应用
第10章 马尔可夫链蒙特卡罗方法的应用
索引
译者序
时间序列分析在理论和经验上已成为金融市场研究的不可缺少的部分。 时间序列分析方法已是金融定量分析的主流方法之一。 近代计量经济和金融市场的许多研究成果都建立在时间序列分析的基础之上。Engle和Grange因为他们的时间序列模型在经济金融中的广泛应用而获得2003年的诺贝尔经济学奖,就是时间序列分析方法的重要性在世界上被广泛认可的有力证明。. 蔡瑞胸(Ruey S.Tsay)教授是美国芝加哥大学的计量经济与统计学的H.G.B,亚历山大(Alexander)教授.他在计量经济学、统计学和金融市场的研究方面成果卓著.他的这本《金融时间序列分析》涵盖了当前数理金融研究中最新的几个重要方面:风险值的计算..
前言
本书由自1999年我在芝加哥大学商学院所教的MBA(工商管理硕士)金融时间序列分析课程发展而来。它也包含了过去几年我开设的时间序列分析博士生课程的内容。这是一本引论性质的书,旨在对金融计量模型及其在金融时间序列数据建模和预测中的应用,进行系统的、综合的阐述。 目标是使读者了解金融数据的基本特征,懂得金融计量模型的应用,并获得分析金融时间序列的经验。本书可作为金融专业MBA学生的时间序列分析教材,也适用于商学、经济学、数学和统计学专业对金融计量学感兴趣的研究生和高年级本科生。它也可以作为要进行风险值(Valueat Risk)的计算、波动率(Volatility)建模和对具有先后相关性的数..