分享
 
 
 

最小二乘法公式

王朝百科·作者佚名  2010-04-30
窄屏简体版  字體: |||超大  

简介最小二乘法公式

∑(X--X平)(Y--Y平)

=∑(XY--X平Y--XY平+X平Y平)

=∑XY--X平∑Y--Y平∑X+nX平Y平

=∑XY--nX平Y平--nX平Y平+nX平Y平

=∑XY--nX平Y平

∑(X --X平)^2

=∑(X^2--2XX平+X平^2)

=∑X^2--2nX平^2+nX平^2

=∑X^2--nX平^2

最小二乘公式(针对y=ax+b形式):

a=(NΣxy-ΣxΣy)/(NΣx^2-(Σx)^2)

b=y(平均)-ax(平均)

最小二乘法

在我们研究两个变量(x, y)之间的相互关系时,通常可以得到一系列成对的数据(x1, y1、x2, y2... xm , ym);将这些数据描绘在x -y直角坐标系中(如图1), 若发现这些点在一条直线附近,可以令这条直线方程如(式1-1)。

Y计= a0 + a1 X (式1-1)

其中:a0、a1 是任意实数

为建立这直线方程就要确定a0和a1,应用《最小二乘法原理》,将实测值Yi与利用(式1-1)计算值(Y计=a0+a1X)的离差(Yi-Y计)的平方和〔∑(Yi - Y计)2〕最小为“优化判据”。

令: φ = ∑(Yi - Y计)2 (式1-2)

把(式1-1)代入(式1-2)中得:

φ = ∑(Yi - a0 - a1 Xi)2 (式1-3)

当∑(Yi-Y计)平方最小时,可用函数 φ 对a0、a1求偏导数,令这两个偏导数等于零。

(式1-4)

(式1-5)

亦即:

m a0 + (∑Xi ) a1 = ∑Yi (式1-6)

(∑Xi ) a0 + (∑Xi2 ) a1 = ∑(Xi, Yi) (式1-7)

得到的两个关于a0、 a1为未知数的两个方程组,解这两个方程组得出:

a0 = (∑Yi) / m - a1(∑Xi) / m (式1-8)

a1 = [∑Xi Yi - (∑Xi ∑Yi)/ m] / [∑Xi2 - (∑Xi)2 / m)] (式1-9)

这时把a0、a1代入(式1-1)中, 此时的(式1-1)就是我们回归的元线性方程即:数学模型。

在回归过程中,回归的关联式是不可能全部通过每个回归数据点(x1, y1、 x2, y2...xm,ym),为了判断关联式的好坏,可借助相关系数“R”,统计量“F”,剩余标准偏差“S”进行判断;“R”越趋近于 1 越好;“F”的绝对值越大越好;“S”越趋近于 0 越好。

R = [∑XiYi - m (∑Xi / m)(∑Yi / m)]/ SQR{[∑Xi2 - m (∑Xi / m)2][∑Yi2 - m (∑Yi / m)2]} (式1-10) *

在(式1-1)中,m为样本容量,即实验次数;Xi、Yi分别任意一组实验X、Y的数值。微积分应用课题一 最小二乘法

从前面的学习中, 我们知道最小二乘法可以用来处理一组数据, 可以从一组测定的数据中寻求变量之间的依赖关系, 这种函数关系称为经验公式. 本课题将介绍最小二乘法的精确定义及如何寻求 与 之间近似成线性关系时的经验公式. 假定实验测得变量之间的 个数据 , , …, , 则在 平面上, 可以得到 个点 , 这种图形称为“散点图”, 从图中可以粗略看出这些点大致散落在某直线近旁, 我们认为 与 之间近似为一线性函数, 下面介绍求解步骤.

考虑函数 , 其中 和 是待定常数. 如果 在一直线上, 可以认为变量之间的关系为 . 但一般说来, 这些点不可能在同一直线上. 记 , 它反映了用直线 来描述 , 时, 计算值 与实际值 产生的偏差. 当然要求偏差越小越好, 但由于 可正可负, 因此不能认为总偏差 时, 函数 就很好地反映了变量之间的关系, 因为此时每个偏差的绝对值可能很大. 为了改进这一缺陷, 就考虑用 来代替 . 但是由于绝对值不易作解析运算, 因此, 进一步用 来度量总偏差. 因偏差的平方和最小可以保证每个偏差都不会很大. 于是问题归结为确定 中的常数 和 , 使 为最小. 用这种方法确定系数 , 的方法称为最小二乘法.

由极值原理得 , 即

解此联立方程得

(*)

问题 I 为研究某一化学反应过程中, 温度 ℃)对产品得率 (%)的影响, 测得数据如下:

温度 ℃)

100 110 120 130 140 150 160 170 180 190

得率 (%)

45 51 54 61 66 70 74 78 85 89

(1) 利用“ListPlot”函数, 绘出数据 的散点图(采用格式: ListPlot[{ , , …, }, Prolog->AbsolutePointSize[3]] );

(2) 利用“Line”函数, 将散点连接起来, 注意观察有何特征? (采用格式: Show[Graphics[Line[{ , , …, }]] , Axes->True ]) ;

(3) 根据公式(*), 利用“Apply”函数及集合的有关运算编写一个小的程序, 求经验公式 ;

(程序编写思路为: 任意给定两个集合A (此处表示温度)、B(此处表示得率), 由公式(*)可定义两个二元函数(集合A和B为其变量)分别表示 和 . 集合A元素求和: Apply[Plus,A] 表示将加法施加到集合A上, 即各元素相加, 例如Apply[Plus,{1,2,3}]=6;Length[A]表示集合A 元素的个数, 即为n; A.B表示两集合元素相乘相加;A*B表示集合A与B元素对应相乘得到的新的集合.)

(4) 在同一张图中显示直线 及散点图;

(5) 估计温度为200时产品得率.

然而, 不少实际问题的观测数据 , , …, 的散点图明显地不能用线性关系来描叙, 但确实散落在某一曲线近旁, 这时可以根据散点图的轮廓和实际经验, 选一条曲线来近似表达 与 的相互关系.

问题 II 下表是美国旧轿车价格的调查资料, 今以 表示轿车的使用年数, (美元)表示相应的平均价格, 求 与 之间的关系.

使用年数

1 2 3 4 5 6 7 8 9 10

平均价格

2651 1943 1494 1087 765 538 484 290 226 204

(1) 利用“ListPlot”函数绘出数据 的散点图, 注意观察有何特征?

(2) 令 , 绘出数据 的散点图, 注意观察有何特征?

(3) 利用“Line”函数, 将散点 连接起来, 说明有何特征?

(4) 利用最小二乘法, 求 与 之间的关系;

(5) 求 与 之间的关系;

(6) 在同一张图中显示散点图 及 关于 的图形.

思考与练习1. 假设一组数据 : , , …, 变量之间近似成线性关系, 试利用集合的有关运算, 编写一简单程序: 对于任意给定的数据集合 , 通过求解极值原理所包含的方程组, 不需要给出 、 计算的表达式, 立即得到 、 的值, 并就本课题 I /(3)进行实验.

注: 利用Transpose函数可以得到数据A的第一个分量的集合, 命令格式为:

先求A的转置, 然后取第一行元素, 即为数据A的第一个分量集合, 例如

(A即为矩阵 )

= (数据A的第一个分量集合)

= (数据A的第二个分量集合)

B-C表示集合B与C对应元素相减所得的集合, 如 = .

2. 最小二乘法在数学上称为曲线拟合, 请使用拟合函数“Fit”重新计算 与 的值, 并与先前的结果作一比较.

 
 
 
免责声明:本文为网络用户发布,其观点仅代表作者个人观点,与本站无关,本站仅提供信息存储服务。文中陈述内容未经本站证实,其真实性、完整性、及时性本站不作任何保证或承诺,请读者仅作参考,并请自行核实相关内容。
2023年上半年GDP全球前十五强
 百态   2023-10-24
美众议院议长启动对拜登的弹劾调查
 百态   2023-09-13
上海、济南、武汉等多地出现不明坠落物
 探索   2023-09-06
印度或要将国名改为“巴拉特”
 百态   2023-09-06
男子为女友送行,买票不登机被捕
 百态   2023-08-20
手机地震预警功能怎么开?
 干货   2023-08-06
女子4年卖2套房花700多万做美容:不但没变美脸,面部还出现变形
 百态   2023-08-04
住户一楼被水淹 还冲来8头猪
 百态   2023-07-31
女子体内爬出大量瓜子状活虫
 百态   2023-07-25
地球连续35年收到神秘规律性信号,网友:不要回答!
 探索   2023-07-21
全球镓价格本周大涨27%
 探索   2023-07-09
钱都流向了那些不缺钱的人,苦都留给了能吃苦的人
 探索   2023-07-02
倩女手游刀客魅者强控制(强混乱强眩晕强睡眠)和对应控制抗性的关系
 百态   2020-08-20
美国5月9日最新疫情:美国确诊人数突破131万
 百态   2020-05-09
荷兰政府宣布将集体辞职
 干货   2020-04-30
倩女幽魂手游师徒任务情义春秋猜成语答案逍遥观:鹏程万里
 干货   2019-11-12
倩女幽魂手游师徒任务情义春秋猜成语答案神机营:射石饮羽
 干货   2019-11-12
倩女幽魂手游师徒任务情义春秋猜成语答案昆仑山:拔刀相助
 干货   2019-11-12
倩女幽魂手游师徒任务情义春秋猜成语答案天工阁:鬼斧神工
 干货   2019-11-12
倩女幽魂手游师徒任务情义春秋猜成语答案丝路古道:单枪匹马
 干货   2019-11-12
倩女幽魂手游师徒任务情义春秋猜成语答案镇郊荒野:与虎谋皮
 干货   2019-11-12
倩女幽魂手游师徒任务情义春秋猜成语答案镇郊荒野:李代桃僵
 干货   2019-11-12
倩女幽魂手游师徒任务情义春秋猜成语答案镇郊荒野:指鹿为马
 干货   2019-11-12
倩女幽魂手游师徒任务情义春秋猜成语答案金陵:小鸟依人
 干货   2019-11-12
倩女幽魂手游师徒任务情义春秋猜成语答案金陵:千金买邻
 干货   2019-11-12
 
推荐阅读
 
 
 
>>返回首頁<<
 
靜靜地坐在廢墟上,四周的荒凉一望無際,忽然覺得,淒涼也很美
© 2005- 王朝網路 版權所有