在固体物理学中,固体的能带结构[1](又称电子能带结构)描述了禁止或允许电子所带有的能量,这是周期性晶格中的量子动力学电子波衍射引起的。材料的能带结构决定了多种特性,特别是它的电子学和光学性质。
为何有能带呢?
单个自由原子的电子占据了原子轨道,形成一个分立的能级结构。如果几个原子集合成分子,他们的原子轨道发生类似于耦合振荡的分离。这会产生与原子数量成比例的分子轨道。当大量(数量级为1020或更多)的原子集合成固体时,轨道数量急剧增多,轨道相互间的能量的差别变的非常小。但是,无论多少原子聚集在一起,轨道的能量都不是连续的。
这些能级如此之多甚至无法区分。首先,固体中能级的分离与电子和声原子振动持续的交换能相比拟。其次,由于相当长的时间间隔,它接近于由于海森伯格的测不准原理引起的能量的不确定度。
物理学中流行的方法是从不带电的电子和原子核出发,因为它们是自由的平面波,可以具有任意能量,并在带电后衰减。这导致了布拉格反射和带结构。