分享
 
 
 

欧拉乘积公式

王朝百科·作者佚名  2010-05-21
窄屏简体版  字體: |||超大  

欧拉乘积公式对任意复数s, 若 Re(s)>1, 则: Σn n-s = Πp(1-p-s)-1

这一公式是 Leonhard Euler (1707 - 1783) 于 1737 年在一篇题为 «对无穷级数的若干观察» 的论文中提出并加以证明的,式中 n 为自然数,p为素数。Euler乘积公式将一个对自然数的求和表达式与一个对素数的连乘积表达式联系在一起,蕴涵着有关素数分布的重要信息。这一信息在隔了漫长的122年之后终于被 Bernhard Riemann (1826 - 1866) 所破译,于是便有了Riemann 的著名论文«论小于给定数值的素数个数»。为了纪念 Riemann 的贡献,Euler乘积公式左端的求和式被冠以Riemann的大名,并沿用Riemann使用过的记号ζ(s), 称为Riemann ζ函数。

Euler 乘积公式的证明十分简单,唯一要小心的就是对无穷级数和无穷乘积的处理,不能随意使用有限级数和乘积的性质。我们在下面证明的是一个更为普遍的结果,Euler乘积公式将作为该结果的一个特例出现。

广义欧拉乘积公式: 设 f(n) 满足 f(n1)f(n2) = f(n1n2), 且 Σn|f(n)| < ∞, 则:

Σnf(n) = Πp[1+f(p)+f(p2)+f(p3)+ ...]

证明证明: 由于 Σn|f(n)| < ∞, 因此 1+f(p)+f(p2)+f(p3)+ ... 绝对收敛。 考虑连乘积中 p < N 的部分 (有限项), 由于级数绝对收敛, 乘积又只有有限项, 因此可以使用与普通有限求和及乘积一样的结合律及分配律。利用 f(n) 的乘积性质可得:

Πp<N[1+f(p)+f(p2)+f(p3)+ ...] = Σ'f(n)。

其中右端求和对所有只含 N 以下素数因子的自然数进行 (每个这样的自然数只在求和中出现一次,因为自然数的素数分解是唯一的)。由于所有本身在 N 以下的自然数显然都只含 N 以下的素数因子,因此 Σ'f(n) = Σn<Nf(n) + R(N),其中R(N)为对所有大于等于 N 但只含 N 以下素数因子的自然数求和的结果。 由此我们得到:

Πp<N[1+f(p)+f(p2)+f(p3)+ ...] = Σn<Nf(n) + R(N)

要使广义 Euler 乘积公式成立, 只需证明 limN→∞R(N) = 0 即可。 后者是显然的, 因为 |R(N)| ≤ Σn≥N|f(n)|,而 Σn|f(n)| < ∞ 表明 limN→∞Σn≥N|f(n)| = 0, 从而 limN→∞|R(N)| = 0。

由于 1+f(p)+f(p2)+f(p3)+ ... = [1-f(p)]-1, 因此广义 Euler 乘积公式也可以写成:

Σnf(n) = Πp[1-f(p)]-1

在广义 Euler 乘积公式中取 f(n) = n-s, 则显然 Σn|f(n)| < ∞ 对应于 Euler 乘积公式中的条件 Re(s)>1, 而广义 Euler 乘积公式退化为 Euler 乘积公式。

从上述证明中我们可以看到, Euler 乘积公式成立的关键在于每一个自然数都具有唯一素数分解式这一基本性质 (即所谓的算术基本定理)。

Euler 本人的证明: 除了上述证明方法外, Euler 原始论文中的证明方法也相当简洁, 值得介绍一下。 仍以广义 Euler 乘积公式为框架, 注意到 (利用 f(n) 的性质):

f(2)Σnf(n) = f(2)+f(4)+f(6)+ ...

因此:

[1-f(2)]Σnf(n) = f(1)+f(3)+f(5)+ ...

等式右端所有含有因子 2 的 f(n) 项都消去了 (这种逐项对消有赖于Σn|f(n)| < ∞, 即 Σnf(n) 绝对收敛)。

类似地,以 [1-f(3)] 乘以上式则右端所有含有因子 3 的 f(n) 项也都消去了, 依此类推, 将所有 [1-f(p)] (p 为素数) 乘上后右端便只剩下了 f(1), 即:

Πp[1-f(p)]Σnf(n) = f(1) = 1

其中最后一步再次使用了 f(n) 的性质 (f(1)f(n)=f(n) → f(1)=1)。将无穷乘积移到等式右边显然就得到了广义 Euler 乘积公式。 有兴趣的朋友不妨试着将上述最后几步用极限的语言严格表述一下。

推论: Riemann ζ函数ζ(s)在 Re(s)>1 没有零点。

证明: 设 Re(s)=a, 则 Euler 乘积公式给出:

|ζ(s)| = Πp|1-p-s|-1 ≥ Πp(1+p-a)-1 = exp[-Σpln(1+p-a)]

注意到对于任何 x>0, ln(1+x)<x,因此由上式可进一步推得:

|ζ(s)| ≥ exp[-Σpp-a] > 0

其中最后一步是因为对于 a>1,Σpp-a 收敛。

 
 
 
免责声明:本文为网络用户发布,其观点仅代表作者个人观点,与本站无关,本站仅提供信息存储服务。文中陈述内容未经本站证实,其真实性、完整性、及时性本站不作任何保证或承诺,请读者仅作参考,并请自行核实相关内容。
2023年上半年GDP全球前十五强
 百态   2023-10-24
美众议院议长启动对拜登的弹劾调查
 百态   2023-09-13
上海、济南、武汉等多地出现不明坠落物
 探索   2023-09-06
印度或要将国名改为“巴拉特”
 百态   2023-09-06
男子为女友送行,买票不登机被捕
 百态   2023-08-20
手机地震预警功能怎么开?
 干货   2023-08-06
女子4年卖2套房花700多万做美容:不但没变美脸,面部还出现变形
 百态   2023-08-04
住户一楼被水淹 还冲来8头猪
 百态   2023-07-31
女子体内爬出大量瓜子状活虫
 百态   2023-07-25
地球连续35年收到神秘规律性信号,网友:不要回答!
 探索   2023-07-21
全球镓价格本周大涨27%
 探索   2023-07-09
钱都流向了那些不缺钱的人,苦都留给了能吃苦的人
 探索   2023-07-02
倩女手游刀客魅者强控制(强混乱强眩晕强睡眠)和对应控制抗性的关系
 百态   2020-08-20
美国5月9日最新疫情:美国确诊人数突破131万
 百态   2020-05-09
荷兰政府宣布将集体辞职
 干货   2020-04-30
倩女幽魂手游师徒任务情义春秋猜成语答案逍遥观:鹏程万里
 干货   2019-11-12
倩女幽魂手游师徒任务情义春秋猜成语答案神机营:射石饮羽
 干货   2019-11-12
倩女幽魂手游师徒任务情义春秋猜成语答案昆仑山:拔刀相助
 干货   2019-11-12
倩女幽魂手游师徒任务情义春秋猜成语答案天工阁:鬼斧神工
 干货   2019-11-12
倩女幽魂手游师徒任务情义春秋猜成语答案丝路古道:单枪匹马
 干货   2019-11-12
倩女幽魂手游师徒任务情义春秋猜成语答案镇郊荒野:与虎谋皮
 干货   2019-11-12
倩女幽魂手游师徒任务情义春秋猜成语答案镇郊荒野:李代桃僵
 干货   2019-11-12
倩女幽魂手游师徒任务情义春秋猜成语答案镇郊荒野:指鹿为马
 干货   2019-11-12
倩女幽魂手游师徒任务情义春秋猜成语答案金陵:小鸟依人
 干货   2019-11-12
倩女幽魂手游师徒任务情义春秋猜成语答案金陵:千金买邻
 干货   2019-11-12
 
推荐阅读
 
 
 
>>返回首頁<<
 
靜靜地坐在廢墟上,四周的荒凉一望無際,忽然覺得,淒涼也很美
© 2005- 王朝網路 版權所有