波兰空间

王朝百科·作者佚名  2010-05-29
窄屏简体版  字體: |||超大  

在数学中,波兰空间是指“可分可完备距离化空间”。具体说,就是一个这样的拓扑空间,它拥有一个可数稠密子集——可分性;并且,它还同胚于一个完备距离空间。波兰空间这个名称来自于最初的研究者雪平斯基(Sierpiński),库拉妥斯基(Kuratowski),塔斯基(Tarski)等人。在当代数学中,波兰空间研究主要集中在描述集合论中。

常见的波兰空间的例子如:实直线,有限维空间,巴拿赫空间,康托集,贝尔空间等。一个波兰空间X的子集合A仍然是波兰空间的充分必要条见是:A能够表示成X中一列开集的交集。因此,开区间(0,1),无理数全体等,做为实直线的子集,都仍然是波兰空间。

 
 
 
免责声明:本文为网络用户发布,其观点仅代表作者个人观点,与本站无关,本站仅提供信息存储服务。文中陈述内容未经本站证实,其真实性、完整性、及时性本站不作任何保证或承诺,请读者仅作参考,并请自行核实相关内容。
 
 
© 2005- 王朝網路 版權所有 導航