李德毅老师开创的"云"理论,是对传统的隶属函数概念的扬弃。自然界中大量模糊概念可以用正态云来刻划的事实,导致了对正态云外部特征以及内部机理的深入研究。模糊概念可表述为一个边界具有不同弹性的,收敛于正态分布函数的"云"。实质上,云是用语言值表示的某个定性概念与其定量表示之间的不确定性转换模型,云的数字特征可用期望值Ex、熵En、超熵He三个数值来表征,它把模糊性和随机性完全集成到一起,构成定性和定量相互间的映射,为定性与定量相结合的信息处理提供了有力手段。所以它成为令人瞩目的处理模糊信息的有效工具。
云是用语言值表示的某个定性概念与其定量表示之间的不确定转换模型,它主要反映宇宙中事物或人类知识中概念的两种不确定性:模糊性(边界的亦此亦比性)和随机性(发生的概率),用云模型把模糊性和随机性完全集成在一起,研究自然语言中的最基本的语言值(又称语言原子)所蕴含的不确定性的普遍规律,使得有可能从语言值表达的定性的信息中获得定量数据的范围和分布规律,也有可能从精确数值有效转换为恰当的定性语言值。
设X是一个精确数值量的集合X={x},称为论域,关于论域X上对应的定性概念 ,是指对于任意数值量,都存在一个有稳定倾向的随机数 ,叫作x对的隶属度,隶属度在论域上的分布称为隶属云,简称为云,它由许许多多云滴组成,某一个云滴也许无足轻重,但云的整体形状反映了定性概念的重要特性。因为这种分布很类似天空中的云彩,远看有明确的形状,近看没有确定的边界,所以借用云来比喻定性和定量之间的不确定性映射。云的数字特征用期望值Ex、熵En和超熵He表示。期望值Ex表示最能代表这个定性概念的值,通常是云重心对应的x值,它应该100%地属于这个定性概念;熵En是定性概念模糊度的度量,反映了可以被概念接受的数值范围,体现了亦此亦比性的裕度。超熵He是熵的熵,反映了概念 的熵的离散程度。下图所示为云的三个数值特征示意图。
正态云是表征语言原子最普遍最重要的工具。下图为正向云发生示意图。
给定符合某一正态云分布规律的一组云滴作为样本(xi, mi),产生云所描述的定性概念的三个数字特征值(Ex, En He),其软件或硬件实现称为逆向云发生器(Backward Cloud Generator),如下图所示,一般用CG -1表示。正向云发生器和逆向云发生器相结合,实现定性与定量的随时转换。
精确数值可以表示为熵和超熵均为0的云,即其数字特征为(Ex,0,0);模糊集理论意义下的模糊数可以看成是超熵为0的云,其数字特征为(Ex,En,0);语言值的云的数字特征为(Ex,En,He)。由此可见,定性语言值的云表示具有普遍意义,精确数值和模糊数均可理解为云表示的特例。
按云的产生机理和计算方向有以下分类:
云的应用范围很广,目前云模型被成功地用于人工智能、跳频云发生器、C3I系统的效能评估中。