逃逸时间算法

王朝百科·作者佚名  2010-06-27
窄屏简体版  字體: |||超大  

逃逸时间算法,假设有一个充分大的整数N,当未逃逸区域M中的初始点a经过小于N次迭代就达到未逃逸区域M的边界,甚至超出了边界,我们就认为点a逃逸出去了;而如果经过N次迭代后a的轨迹仍未达到M的边界,我们就认为a是A上的点。用这样的方法绘制出A的边界图形,这便是逃逸时间算法的基本思想。

 
 
 
免责声明:本文为网络用户发布,其观点仅代表作者个人观点,与本站无关,本站仅提供信息存储服务。文中陈述内容未经本站证实,其真实性、完整性、及时性本站不作任何保证或承诺,请读者仅作参考,并请自行核实相关内容。
 
 
© 2005- 王朝網路 版權所有 導航