
Small interfering RNA (siRNA):是一种小RNA分子(~21-25核苷酸),由Dicer(RNAase Ⅲ家族中对双链RNA具有特异性的酶)加工而成。SiRNA是siRISC的主要成员,激发与之互补的目标mRNA的沉默。
siRNA原理:
RNA干涉(RNAi)在实验室中是一种强大的实验工具,利用具有同源性的双链RNA(dsRNA)诱导序列特异的目标基因的沉寂,迅速阻断基因活性。siRNA在RNA沉寂通道中起中心作用,是对特定信使RNA(mRNA)进行降解的指导要素。siRNA是RNAi途径中的中间产物,是RNAi发挥效应所必需的因子。siRNA的形成主要由Dicer和Rde-1调控完成。由于RNA 病毒入侵、转座子转录、基因组中反向重复序列转录等原因,细胞中出现了dsRNA,Rde-1(RNAi缺陷基因-1)编码的蛋白质识别外源dsRNA,当dsRNA达到一定量的时候,Rde-1引导dsRNA与Rde-1编码的Dicer(Dicer是一种RNaseIII 活性核酸内切酶,具有四个结构域:Argonaute家族的PAZ结构域,III型RNA酶活性区域,dsRNA结合区域以及DEAH/DEXHRNA解旋酶活性区)结合,形成酶-dsRNA复合体。在Dicer酶的作用下,细胞中的单链靶mRNA(与dsRNA具有同源序列)与dsRNA的正义链互换,原来dsRNA中的正义链被mRNA代替而从酶-dsRNA复合物中释放出来,然后,在ATP的参与下,细胞中存在的一种RNA诱导的沉默复合体RNA-induced silencing complex (RISC,由核酸内切酶、核酸外切酶、解旋酶等构成,作用是对靶mRNA进行识别和切割)利用结合在其上的核酸内切酶的活性来切割dsRNA上处于原来正义链位置的靶mRNA分子中与dsRNA反义链互补的区域,形成21-23nt的dsRNA小片段,这些小片段即为siRNA。RNAi干涉的关键步骤是组装RISC和合成介导特异性反应的siRNA蛋白。siRNA并入RISC中,然后与靶标基因编码区或UTR区完全配对,降解靶标基因,因此说siRNA只降解与其序列互补配对的mRNA。其调控的机制是通过互补配对而沉默相应靶位基因的表达,所以是一种典型的负调控机制。siRNA识别靶序列是有高度特异性的,因为降解首先在相对于siRNA来说的中央位置发生,所以这些中央的碱基位点就显得极为重要,一旦发生错配就会严重抑制RNAi的效应。
siRNA有如下特点:
1. 长度约在22nt左右。
2. 依赖Dicer酶的加工,是Dicer的产物,所以具有Dicer产物的特点。
3. 生成需要Argonaute家族蛋白存在。
4. 是RISC组分。
5. siRNA合成是由双链的RNA或RNA前体形成的。
6. siRNA是人工体外合成的,通过转染进入人体内,是RNA干涉的中间产物。
7. 结构上, siRNA是双链RNA。
8. 在Dicer酶的加工过程中, siRNA对称地来源于双链RNA的前体的两侧臂。
9. 在作用位置上, siRNA可作用于mRNA的任何部位。
10. 在作用方式上, siRNA只能导致靶标基因的降解,即为转录水平后调控。
11. siRNA不参与生物生长,是RNAi的产物,原始作用是抑制转座子活性和病毒感染。
siRNA设计时的一些问题:
1) 物种特异性:一般来说,siRNA都具有物种特异性,很少与其他物种有相同的靶位点,所以针对人体基因设计的siRNA不会沉默其他物种的同源序列。然而,也有研究表明siRNA经过特异性设计后能对两个或两个以上的物种有效(人、小鼠、大鼠可能能找到共同靶点,但有效性需进一步鉴定),这需要仔细进行siRNA设计和生物信息学分析。
2) 靶标一般在CDS区选择:siRNA的作用是在mRNA水平,而不是在蛋白质水平。要设计siRNA,需要准确知道靶mRNA序列。由于遗传密码的兼并性和密码子的偏移,不可能通过蛋白序列准确预测核苷酸序列。转录后的RNA前体通过剪接去除内含子序列形成成熟的mRNA。因为siRNA的功能是酶解mRNA序列的,根据基因组序列设计的RNA序列有可能落在内含子区,导致设计的siRNA无效,所以应该根据mRNA序列而不是基因组序列来设计siRNA。
3)siRNA的转染效率:siRNA的分子结构很小,借助转染试剂的帮助一般都能有效转染,但仍有一些例外:神经细胞、干细胞。可以使用荧光标记siRNA来优化转染条件,用流式细胞仪或者荧光共聚焦显微镜即可检测标记的siRNA。
siRNA药物的开发:
AMD已进入临床三期了