欧氏距离:(∑(Xi-Yi)2)1/2,即两项间的差是每个变量值差的平方和再平方根,目的是计算其间的整体距离即不相似性。
我们熟悉的欧氏距离虽然很有用,但也有明显的缺点。它将样品的不同属性(即各指标或各变量)之间的差别等同看待,这一点有时不能满足实际要求。例如,在教育研究中,经常遇到对人的分析和判别,个体的不同属性对于区分个体有着不同的重要性。因此,有时需要采用不同的距离函数。[1]
K-means算法以欧式距离作为相似度测度
欧氏距离:(∑(Xi-Yi)2)1/2,即两项间的差是每个变量值差的平方和再平方根,目的是计算其间的整体距离即不相似性。
我们熟悉的欧氏距离虽然很有用,但也有明显的缺点。它将样品的不同属性(即各指标或各变量)之间的差别等同看待,这一点有时不能满足实际要求。例如,在教育研究中,经常遇到对人的分析和判别,个体的不同属性对于区分个体有着不同的重要性。因此,有时需要采用不同的距离函数。[1]
K-means算法以欧式距离作为相似度测度