自适应网格方法概述
自适应网格方法是指计算中,在某些变化较为剧烈的区域,如大变形、激波面、接触间断面和滑移面等,网格在迭代过程不断调节,将网格细化,做到网格点分布与物理解的耦合,从而提高解的精度和分辨率的一种技术。自适应网格希望在物理解变动较大的区域网格自动密集,而在物理解变化平缓区域网格相对稀疏,这样在保持计算高效率的同时得到高精度的解。自适应网格技术主要有移动网格方法和局部细化或粗化的网格方法。近三十年来,自适应网格方法一直引起国际学术界和各类应用部门的高度重视,并且成为网格方法研究的热点问题,发展了很多方法,在一些领域应用非常广泛。
比如在成型过程模拟中,坯料遇到比较剧烈的变形时可以自动进行局部区域的网格细分,以提高这些部位计算的准确度,如图9-1所示。自适应网格技术对冲压成型是至关重要的,因为初始的冲压板材通常比较平坦、形状很简单,采用有限元网格离散化时,如果网格较粗,可能引起较大误差。但如果采用细密的有限元网格,将增加单元的总数,并且由于单元尺寸减小将降低极限时步长,增加计算的机时。虽然采用局部细分网格可以节省机时,但由于板料大变形和在模具中相对滑动,难以预测局部细分网格在初始状态板料上的位置,而且局部细分网格在前处理时也有很大麻烦。自适应网格技术刚好解决了这一问题,并在时间与精度上巧妙地取得了平衡。自适应网格技术提高了对零件的表面质量(表面缺陷、擦伤、微皱纹等现象)判断的准确性,并且可以节约大量的计算时间。
9.2 h-adaptive方法和r-adapdve方法
在LS-DYNA中,自适应网格划分方法可以分为两种:h-adaptive方法和r-adaptive方法。h-adaptive方法是指单元变形较大时,将单元细分为更小的单元以改善精度,目前仅适用于壳单元,主要用于金属成型模拟、薄壁结构受压屈曲等问题。
在h-adaptive方法中,某些单元分割为更小的单元以改善计算精度,如图9-2所示,薄壁方形梁屈曲分析采用的是一级自适应网格划分计算。LS-DYNA中采用自适应网格方法的目的在于使用有限的计算资源获得最大的计算精度。用户设置好初始网格和自适应划分级别后,程序根据需要将某些单元进行分割。虽然这种方法并不能完全解决求解过程中的误差,但与固定网格相比,可以使用较少的单元和计算资源来尽可能地提高求解精度。
h-adaptive方法中,某些单元由于精度需要细分为更小的单元,这个过程称为裂变。裂变后,新单元的边长尺寸是原来的1/2,通过各边中点以及单元质心,一个四边形单元可以分割为四个四边形单元,如图9-3所示。