图书信息

书 名: C语言算法速查手册
作者:程晓旭 张海
出版社:人民邮电出版社
出版时间: 2009年10月
ISBN: 9787115212092
开本: 16开
定价: 49.00 元
内容简介《C语言算法速查手册》用C语言编写了科研和工程中最常用的166个算法,这些算法包括复数运算、多项式的计算、矩阵运算、线性代数方程组的求解、非线性方程与方程组的求解、代数插值法、数值积分法、常微分方程(组)初值问题的求解、拟合与逼近、特殊函数、极值问题、随机数产生与统计描述、查找、排序、数学变换与滤波等。同时结合这些算法列举了将近100个应用实例,对其进行验证和分析。
《C语言算法速查手册》适用于C语言算法的初学者,也可以作为高等院校师生的学习参考用书。
图书目录第1章绪论1
1.1程序设计语言概述1
1.1.1机器语言1
1.1.2汇编语言2
1.1.3高级语言2
1.1.4C语言3
1.2C语言的优点和缺点4
1.2.1C语言的优点4
1.2.2C语言的缺点6
1.3算法概述7
1.3.1算法的基本特征7
1.3.2算法的复杂度8
1.3.3算法的准确性10
1.3.4算法的稳定性14
第2章复数运算18
2.1复数的四则运算18
2.1.1[算法1]复数乘法18
2.1.2[算法2]复数除法20
2.1.3 【实例5】 复数的四则运算22
2.2复数的常用函数运算23
2.2.1[算法3]复数的乘幂23
2.2.2[算法4]复数的n次方根25
2.2.3[算法5]复数指数27
2.2.4[算法6]复数对数29
2.2.5[算法7]复数正弦30
2.2.6[算法8]复数余弦32
2.2.7 【实例6】 复数的函数运算34
第3章多项式计算37
3.1多项式的表示方法37
3.1.1系数表示法37
3.1.2点表示法38
3.1.3[算法9]系数表示转化为点表示38
3.1.4[算法10]点表示转化为系数表示42
3.1.5 【实例7】系数表示法与点表示法的转化46
3.2多项式运算47
3.2.1[算法11]复系数多项式相乘47
3.2.2[算法12]实系数多项式相乘50
3.2.3[算法13]复系数多项式相除52
3.2.4[算法14]实系数多项式相除54
3.2.5 【实例8】复系数多项式的乘除法56
3.2.6 【实例9】实系数多项式的乘除法57
3.3多项式的求值59
3.3.1[算法15]一元多项式求值59
3.3.2[算法16]一元多项式多组求值60
3.3.3[算法17]二元多项式求值63
3.3.4 【实例10】一元多项式求值65
3.3.5 【实例11】二元多项式求值66
第4章矩阵计算68
4.1矩阵相乘68
4.1.1[算法18]实矩阵相乘68
4.1.2[算法19]复矩阵相乘70
4.1.3 【实例12】 实矩阵与复矩阵的乘法72
4.2矩阵的秩与行列式值73
4.2.1[算法20]求矩阵的秩73
4.2.2[算法21]求一般矩阵的行列式值76
4.2.3[算法22]求对称正定矩阵的行列式值80
4.2.4 【实例13】 求矩阵的秩和行列式值82
4.3矩阵求逆84
4.3.1[算法23]求一般复矩阵的逆84
4.3.2[算法24]求对称正定矩阵的逆90
4.3.3[算法25]求托伯利兹矩阵逆的Trench方法92
4.3.4 【实例14】 验证矩阵求逆算法97
4.3.5 【实例15】 验证T矩阵求逆算法99
4.4矩阵分解与相似变换102
4.4.1[算法26]实对称矩阵的LDL分解102
4.4.2[算法27]对称正定实矩阵的Cholesky分解104
4.4.3[算法28]一般实矩阵的全选主元LU分解107
4.4.4[算法29]一般实矩阵的QR分解112
4.4.5[算法30]对称实矩阵相似变换为对称三对角阵116
4.4.6[算法31]一般实矩阵相似变换为上Hessen-Burg矩阵121
4.4.7 【实例16】 对一般实矩阵进行QR分解126
4.4.8 【实例17】 对称矩阵的相似变换127
4.4.9 【实例18】 一般实矩阵相似变换129
4.5矩阵特征值的计算130
4.5.1[算法32]求上Hessen-Burg矩阵全部特征值的QR方法130
4.5.2[算法33]求对称三对角阵的全部特征值137
4.5.3[算法34]求对称矩阵特征值的雅可比法143
4.5.4[算法35]求对称矩阵特征值的雅可比过关法147
4.5.5 【实例19】 求上Hessen-Burg矩阵特征值151
4.5.6 【实例20】 分别用两种雅克比法求对称矩阵特征值152
第5章线性代数方程组的求解154
5.1高斯消去法154
5.1.1[算法36]求解复系数方程组的全选主元高斯消去法155
5.1.2[算法37]求解实系数方程组的全选主元高斯消去法160
5.1.3[算法38]求解复系数方程组的全选主元高斯-约当消去法163
5.1.4[算法39]求解实系数方程组的全选主元高斯-约当消去法168
5.1.5[算法40]求解大型稀疏系数矩阵方程组的高斯-约当消去法171
5.1.6[算法41]求解三对角线方程组的追赶法174
5.1.7[算法42]求解带型方程组的方法176
5.1.8 【实例21】 解线性实系数方程组179
5.1.9 【实例22】 解线性复系数方程组180
5.1.10 【实例23】 解三对角线方程组182
5.2矩阵分解法184
5.2.1[算法43]求解对称方程组的LDL分解法184
5.2.2[算法44]求解对称正定方程组的Cholesky分解法186
5.2.3[算法45]求解线性最小二乘问题的QR分解法188
5.2.4 【实例24】 求解对称正定方程组191
5.2.5 【实例25】 求解线性最小二乘问题192
5.3迭代方法193
5.3.1[算法46]病态方程组的求解193
5.3.2[算法47]雅克比迭代法197
5.3.3[算法48]高斯-塞德尔迭代法200
5.3.4[算法49]超松弛方法203
5.3.5[算法50]求解对称正定方程组的共轭梯度方法205
5.3.6[算法51]求解托伯利兹方程组的列文逊方法209
5.3.7 【实例26】 解病态方程组214
5.3.8 【实例27】 用迭代法解方程组215
5.3.9 【实例28】 求解托伯利兹方程组217
第6章非线性方程与方程组的求解219
6.1非线性方程求根的基本过程219
6.1.1确定非线性方程实根的初始近似值或根的所在区间219
6.1.2求非线性方程根的精确解221
6.2求非线性方程一个实根的方法221
6.2.1[算法52]对分法221
6.2.2[算法53]牛顿法223
6.2.3[算法54]插值法226
6.2.4[算法55]埃特金迭代法229
6.2.5 【实例29】 用对分法求非线性方程组的实根232
6.2.6 【实例30】 用牛顿法求非线性方程组的实根233
6.2.7 【实例31】 用插值法求非线性方程组的实根235
6.2.8 【实例32】 用埃特金迭代法求非线性方程组的实根237
6.3求实系数多项式方程全部根的方法238
6.3.1[算法56]QR方法238
6.3.2 【实例33】用QR方法求解多项式的全部根240
6.4求非线性方程组一组实根的方法241
6.4.1[算法57]梯度法241
6.4.2[算法58]拟牛顿法244
6.4.3 【实例34】 用梯度法计算非线性方程组的一组实根250
6.4.4 【实例35】 用拟牛顿法计算非线性方程组的一组实根252
第7章代数插值法254
7.1拉格朗日插值法254
7.1.1[算法59]线性插值255
7.1.2[算法60]二次抛物线插值256
7.1.3[算法61]全区间插值259
7.1.4 【实例36】 拉格朗日插值262
7.2埃尔米特插值263
7.2.1[算法62]埃尔米特不等距插值263
7.2.2[算法63]埃尔米特等距插值267
7.2.3 【实例37】 埃尔米特插值法270
7.3埃特金逐步插值271
7.3.1[算法64]埃特金不等距插值272
7.3.2[算法65]埃特金等距插值275
7.3.3 【实例38】 埃特金插值278
7.4光滑插值279
7.4.1[算法66]光滑不等距插值279
7.4.2[算法67]光滑等距插值283
7.4.3 【实例39】 光滑插值286
7.5三次样条插值287
7.5.1[算法68]第一类边界条件的三次样条函数插值287
7.5.2[算法69]第二类边界条件的三次样条函数插值292
7.5.3[算法70]第三类边界条件的三次样条函数插值296
7.5.4 【实例40】 样条插值法301
7.6连分式插值303
7.6.1[算法71]连分式插值304
7.6.2 【实例41】 验证连分式插值的函数308
第8章数值积分法309
8.1变步长求积法310
8.1.1[算法72]变步长梯形求积法310
8.1.2[算法73]自适应梯形求积法313
8.1.3[算法74]变步长辛卜生求积法316
8.1.4[算法75]变步长辛卜生二重积分方法318
8.1.5[算法76]龙贝格积分322
8.1.6 【实例42】 变步长积分法进行一重积分325
8.1.7 【实例43】 变步长辛卜生积分法进行二重积分326
8.2高斯求积法328
8.2.1[算法77]勒让德-高斯求积法328
8.2.2[算法78]切比雪夫求积法331
8.2.3[算法79]拉盖尔-高斯求积法334
8.2.4[算法80]埃尔米特-高斯求积法336
8.2.5[算法81]自适应高斯求积方法337
8.2.6 【实例44】 有限区间高斯求积法342
8.2.7 【实例45】 半无限区间内高斯求积法343
8.2.8 【实例46】 无限区间内高斯求积法345
8.3连分式法346
8.3.1[算法82]计算一重积分的连分式方法346
8.3.2[算法83]计算二重积分的连分式方法350
8.3.3 【实例47】 连分式法进行一重积分354
8.3.4 【实例48】 连分式法进行二重积分355
8.4蒙特卡洛法356
8.4.1[算法84]蒙特卡洛法进行一重积分356
8.4.2[算法85]蒙特卡洛法进行二重积分358
8.4.3 【实例49】 一重积分的蒙特卡洛法360
8.4.4 【实例50】 二重积分的蒙特卡洛法361
第9章常微分方程(组)初值问题的求解363
9.1欧拉方法364
9.1.1[算法86]定步长欧拉方法364
9.1.2[算法87]变步长欧拉方法366
9.1.3[算法88]改进的欧拉方法370
9.1.4 【实例51】 欧拉方法求常微分方程数值解372
9.2龙格-库塔方法376
9.2.1[算法89]定步长龙格-库塔方法376
9.2.2[算法90]变步长龙格-库塔方法379
9.2.3[算法91]变步长基尔方法383
9.2.4 【实例52】 龙格-库塔方法求常微分方程的初值问题386
9.3线性多步法390
9.3.1[算法92]阿当姆斯预报校正法390
9.3.2[算法93]哈明方法394
9.3.3[算法94]全区间积分的双边法399
9.3.4 【实例53】 线性多步法求常微分方程组初值问题401
第10章拟合与逼近405
10.1一元多项式拟合405
10.1.1[算法95]最小二乘拟合405
10.1.2[算法96]最佳一致逼近的里米兹方法412
10.1.3 【实例54】 一元多项式拟合417
10.2矩形区域曲面拟合419
10.2.1[算法97]矩形区域最小二乘曲面拟合419
10.2.2 【实例55】 二元多项式拟合428
第11章特殊函数430
11.1连分式级数和指数积分430
11.1.1[算法98]连分式级数求值430
11.1.2[算法99]指数积分433
11.1.3 【实例56】 连分式级数求值436
11.1.4 【实例57】 指数积分求值438
11.2伽马函数439
11.2.1[算法100]伽马函数439
11.2.2[算法101]贝塔函数441
11.2.3[算法102]阶乘442
11.2.4 【实例58】伽马函数和贝塔函数求值443
11.2.5 【实例59】阶乘求值444
11.3不完全伽马函数445
11.3.1[算法103]不完全伽马函数445
11.3.2[算法104]误差函数448
11.3.3[算法105]卡方分布函数450
11.3.4 【实例60】不完全伽马函数求值451
11.3.5 【实例61】误差函数求值452
11.3.6 【实例62】卡方分布函数求值453
11.4不完全贝塔函数454
11.4.1[算法106]不完全贝塔函数454
11.4.2[算法107]学生分布函数457
11.4.3[算法108]累积二项式分布函数458
11.4.4 【实例63】不完全贝塔函数求值459
11.5贝塞尔函数461
11.5.1[算法109]第一类整数阶贝塞尔函数461
11.5.2[算法110]第二类整数阶贝塞尔函数466
11.5.3[算法111]变型第一类整数阶贝塞尔函数469
11.5.4[算法112]变型第二类整数阶贝塞尔函数473
11.5.5 【实例64】贝塞尔函数求值476
11.5.6 【实例65】变型贝塞尔函数求值477
11.6Carlson椭圆积分479
11.6.1[算法113]第一类椭圆积分479
11.6.2[算法114]第一类椭圆积分的退化形式481
11.6.3[算法115]第二类椭圆积分483
11.6.4[算法116]第三类椭圆积分486
11.6.5 【实例66】第一类勒让德椭圆函数积分求值490
11.6.6 【实例67】第二类勒让德椭圆函数积分求值492
第12章极值问题494
第13章随机数产生与统计描述574
第14章查找609
第15章排序636
第16章数学变换与滤波662
……