支配集

王朝百科·作者佚名  2010-08-19
窄屏简体版  字體: |||超大  

形式上,支配集可描述如下:给定无向图G =〈V , E〉,其中V 是大小为n 的点集, E 是边集, 那么V 的一个子集S称为支配集当且仅当对于V - S 中任何一个点v ,都有S 中的某个定点u , 使得( u , v) ∈E。

支配集问题的两个变形。

定义1 在图G=〈V , E〉中,V 的一个子集S 称为C 强支配集( C 是某个固定的常正整数) 当且仅当对任何一个大小不

小于| S| - C 的S 的一个子集S′,对于V - S 中任何一个顶点v ,都有S′中的某个定点u ,使得( u , v) ∈E。

定义2 在图G=〈V , E〉中,V 的一个子集S 称为完全支配集当且仅当对于V 中任何一个点v ,都有S - { v} 的某个点

u ,使得( u , v) ∈E。

 
 
 
免责声明:本文为网络用户发布,其观点仅代表作者个人观点,与本站无关,本站仅提供信息存储服务。文中陈述内容未经本站证实,其真实性、完整性、及时性本站不作任何保证或承诺,请读者仅作参考,并请自行核实相关内容。
 
 
© 2005- 王朝網路 版權所有 導航