[1]简介这个圆柱形的金属机器,又被称为反转环接收反应换热器(CR5),依靠被聚焦的太阳能来引发一种富铁合成材料的热化学反应。根据设计,该材料在极高温条件下会放弃一个氧分子,而温度降下来时又会重新得到一个氧分子。
该样机每一侧各有一个腔体。一边是热的,另一边凉一些。贯穿中间的是14个飞盘状的环,以每分钟一圈的速度旋转。每个环的外沿都由以锆基为载体的铁氧化合材料组成。全球变暖现在是世界各国都在考虑的大问题,很多科学家都在研究如何将二氧化碳封存,以减少其对地球环境的影响。不过,美国桑迪亚国家实验室的科学家们最近成功演示了一台样机,可以利用太阳能,将水和二氧化碳转化为氢气和一氧化碳。这个“从阳光到汽油”的系统将帮助人们找到一个循环利用二氧化碳的好办法,将发电站和工厂排放的二氧化碳转化为汽油、柴油和航空燃料,其能量转换效率至少达到自然界光合作用效率的两倍。
研究测试科学家们使用一个太阳能聚集器来加热二氧化碳循环器一侧的腔体至1500摄氏度,使得环一侧的铁氧化物放弃氧分子。当这一侧旋转到另一个腔体时,马上开始降温,二氧化碳也被泵入。这种降温过程帮助铁氧化物从二氧化碳中“偷”回氧,留下一氧化碳。这个过程不断重复,使得泵入的二氧化碳不断变成一氧化碳向外输出。
桑迪亚国家实验室的研究人员Miller表示,这一过程也可以用来生产氢气,唯一的不同在于,往第二个容器内添加的不是二氧化碳,而是水。这两个过程分别得到的气体——氢气和二氧化碳混合后成为合成气,合成气可以被当做传统燃料的“简易替换元件”。
目前(2009年11月),日本、法国和德国的一些科学家还在继续沿着这一研究思路努力。
作用这个“从阳光到汽油”的系统将帮助人们找到一个循环利用二氧化碳的好办法,将发电站和工厂排放的二氧化碳转化为汽油、柴油和航空燃料,其能量转换效率至少达到自然界光合作用效率的两倍。这一方法可以对煤厂、酿酒厂等集中排放源释放的二氧化碳进行高效利用。
目标Miller说:他们的短期目标是将效率提高几个百分点,现在的二氧化碳循环器 看起来可能只是很小的一个数字,但他们可以将它与光合作用相比较,光合作用在利用太阳能方面其实效率是非常低下的。光合作用的理论最高效率大约为5%,但实际上只能达到约1%。他相信,从太阳能到燃料的转换效率最终能够接近10%。
研究者指出,该技术大约还需要15到20年才能真正推向市场。在这期间他们的目标是每三年推出新一代的样机,不断提高能量转化效率以及降低成本。这也许可以寄希望于新的陶瓷合成材料的发展,这样的材料在较低一些的温度就会释放氧分子,使得更多的太阳能被转换成氢气或一氧化碳。