盛金简介

范盛金,“三次方程新解法——盛金公式解题法”的发明者。
解一元三次方程问题是世界数学史上较著名且较为复杂而又有趣味的问题,虚数概念的引进、复数理论的建立,就是起源于解三次方程问题。三次方程应用广泛,如电力工程、水利工程、建筑工程、机械工程、动力工程、数学教学及其他领域等。用根号解一元三次方程,虽然有著名的卡尔丹公式,并有相应的判别法,但是使用卡尔丹公式解题比较复杂,缺乏直观性。经过深入研究和探索,范盛金用数学美的方法推导出一套用重根判别式A=b^2-3ac;B=bc-9ad;C=c^2-3bd和总判别式Δ=B^2-4AC构成最简形式的、方便记忆的、解题效率高的,且体现数学有序、对称、和谐与简洁美的,比卡尔丹公式更实用的一元三次方程求根公式——盛金公式,并建立了简明的、直观的、实用的新判别法——盛金判别法,同时提出了盛金定理,盛金定理清晰地回答了解三次方程的疑惑问题,且很有趣味。特别是当Δ=B^2-4AC=0时,盛金公式③:X⑴=-b/a+K;X⑵=X⑶=-K/2,其中K=B/A,(A≠0)简明易记,不存在开方(此时的卡尔丹公式仍存在开立方),手算解题效率高。盛金公式③被称为超级简便的公式。盛金公式与判别法及定理形成了一套完整的、简明的、实用的、具有数学美的解三次方程的理论体系,对研究解高次方程问题及提高解三次方程的效率作出了贡献。
盛金生平范盛金,曾用名范圣芝。湖南常宁人,男,汉族,1955年1月8日生,1970年3月参加工作,1991年7月海南师范学院数学系(函授)毕业,1994年10月加入中国共产党。
1970年3月—1976年2月,先后在广州军区海南生产建设兵团四师十团九连、武装连当战士(海南生产建设兵团于1975年改制为海南农垦,团级单位改制为农场),1976年2月后,在海南国营龙江农场雄英队当工人、炊事班长。
经历了“文化大革命”的十年动乱后,1978年,中国迎来了科学的春天,中国的教育开始走上正轨,也就是1978年6月,经考试和培训后于1978年9月走上了教育工作岗位,先后在海南国营龙江农场雄英中学、查山中学、东方中学任化学教师、数学教师、兼任理科教研组长。

范圣芝当中学教师后改名为范盛金。盛,旺盛;金,金色。意为要珍惜旺盛的金色年华,更加勤奋地学习和研究。
盛金公式于1989年12月发表,那年范盛金是35岁,也正是旺盛的金色年华。
加入党组织后,因工作需要,1996年5月,被组织上安排从事政工工作,任海南国营龙江农场五区政工干事、助理政工师,兼任27队党支部书记。
2001年6月18日,范盛金的弟弟范圣文在广东惠州市创建一家五金精密表业厂——惠州信立丰表业厂(惠州信立丰表业厂于2003年12月迁至深圳宝安挂靠东洋时计,于2004年10月正式注册为深圳市华宏表业有限公司,简称“华宏表业”。范圣文现是深圳市钟表行业协会第11届理事会理事,钟表行业企业家),他于2001年7月,辞去国企单位工作,前往广东协助弟弟办厂,任行政人事主管,负责行政人事、后勤的管理工作。他弟弟的工厂各方面都走上正轨后,为了避免家族式的管理带来的弊病,2001年11月后,到广东省东莞市金富士食品有限公司先后任人事部主管、行政部经理。

东莞市石碣电视台于2002年4月15日到东莞市金富士食品有限公司采访了范盛金和录制节目,并作“做文明员工,创文明企业”的专题报道。
2002年8月,由范盛金牵头组织、策划、布置的东莞市金富士食品有限公司参展东莞市2002年民营经济博览会(首届民博会),荣获2002年民营经济博览会组委会颁发的 “最佳展商奖”。
慈祥父母生父:陈光富,1925年农历4月初四生,江西省(泰和县)小龙钨矿退休干部;
养父:范云丰,1924年农历2月初二生,广东省(始兴县)石人嶂钨矿退休工人;
母亲:谭辉容,1930年农历11月28日生,广东省(始兴县)石人嶂钨矿家属。
范盛金的母亲谭辉容原来是出身一个地主家庭,由于他的外公好赌,被几个人有预谋地配合与他外公开赌,瓜分了他外公的田地和林山,一夜之间,谭辉容由一个地主富家小姐落为贫穷农家女儿。
谭辉容的父亲赌博输掉财产后,她由一个地主家庭落为贫农家庭。解放初期(1950年8月)划成份时被划为贫农成份,成了出身根红苗正的家庭,历次运动也就没有成为批斗对象,这也许是因祸得福。
由父母包办,谭辉容给了一个中农家庭的陈光富做童养媳,陈光富就是范盛金的生父。
1955年1月8日,范盛金出生后,取名叫陈芝生。芝,芝麻,芝麻开花节节高;芝,芝兰,芝兰有秀。意为前程美好,品德高尚,成为优秀子弟。
由于文化的差距与思想观念以及性格的不合,加之是旧社会父母包办的婚姻,在陈芝生满一岁那年,陈光富与谭辉容离婚。几个月后,谭辉容带着陈芝生嫁给了广东省石人嶂钨矿工人范云丰,陈芝生随养父姓,改名范圣芝。
范云丰是广东省石人嶂钨矿的开矿元老,虽然是工人,但深受干部职工的尊敬。开矿初期,范云丰与60名湖南籍的新工人到石人嶂钨矿参加工作,新工人一致选举范云丰当队长,在大跃进的年代,范云丰带领新工人拼命工作,由于大跃进的年代劳动保护条件还不是很好,范云丰患上了职业病(矽肺病)。1967年,组织上照顾把他调到地面安排到矿办农场当负责人,1968年矿办农场其实就是五七干校劳动基地。当时正是“文革”高潮,有些被打倒靠边站的走资派下放矿办农场劳动,范云丰对他们一视同仁,并帮助解决一些实际困难,如安排一些体力强度不是很重的工作,这在当时是要冒着被打成保皇派的风险,因为当时的运动形势是经常开会批斗走资派,工人们的思想比较激进。好些工人要求范云丰上台代表工人发言批斗走资派,但他没有上台发过一次言,一直保持沉默。他心里明白,组织和领导对他是关怀的,只有感恩,没有理由发言批斗他们。
1969年,根据有关政策规定,年仅45岁的范云丰享受全职休养和良好的医疗护理待遇。在接近70岁时,范云丰很感激地说:“我很感谢党,给了我良好的医疗护理待遇,人生70古来稀,得这种病的人能活到70岁不多,我很满足了。”
1994年3月4日,范云丰在广东省石人嶂钨矿职工医院罗坝疗养所安详谢世,享年70岁。
范盛金的生父陈光富现已85岁高龄,身体健康,思维敏捷。儿子在父亲眼里再成熟仍然是儿子,有时他写信给范盛金谈做人的道理,如做人心胸要宽,要严于律已,宽以待人,要高风亮节;尤其爱谈健身的知识,如吃什么对身体有益,可以常吃,吃什么对身体不利,尽量少吃,以及一些轻微常见病的个人处理的一些方法和经验体会;有时还会谈点马列哲学。范盛金读信时,最欣赏他生父的字体,陈光富写的字主干有骨有节,收笔飘逸,似如青松勃发的神采。范盛金平时也有练字,他觉得自己写的字还算过得去,可是与他生

父写的字相比,范盛金就觉得自己写的字显得平淡而无神韵。
谭辉容原来是广东省石人嶂钨矿职工,范盛金的弟弟出生后,谭辉容辞职在家照顾和培养孩子。谭辉容是范盛金的第一任全职教师,使范盛金从小就受到了良好的家庭教育。
范盛金的母亲现已80岁高龄,是一位慈祥而又思维敏捷的老人,有时范盛金和他的母亲在市场买点水果之类的东西,她老人家在算数方面清晰准确,范盛金很钦佩地开玩笑说:“在市场买东西,算数我还不如我妈妈,亏我还是一个数学高手呢。”
中学恩师[中学恩师]
语文老师、班主任:朱源星,1966年毕业于海南师范学院中文系。教师立法第一人。原广东省人大教科文卫委员会党支部书记、办公室主任;
数学老师:罗建强,1966年毕业于华南师范学院数学系。原广东省石人嶂钨矿职工子弟中学教师。
1968—1970年,仍然是 “文化大革命”动乱的高潮期,全国的学校不能正常上课。范圣芝所在的广东省石人嶂钨矿职工子弟中学也一样不能正常上课,有许多学生的学业荒费了。那时,石人嶂钨矿职工子弟中学开展“三三制”活动,即中学生要有三分之一的时间到农村与贫下中农三同(同吃、同住、同劳动),接受贫下中农再教育,开展忆苦思甜活动;三分之一的时间到工厂与工人同学习、同劳动(同学习就是开展早请示、晚汇报活动,具体的做法就是上班之前工人们用半个小时在毛主席像前向毛主席请示,下班后工人们用半个小时在毛主席像前向毛主席汇报);三分之一的时间在学校,在学校要开展革命大批判活动,开展跳忠字舞活动,要开展建校劳动,真正用来上课学习知识的时间很少。那个忠字海洋的革命年代,对科学知识确实是淡化了,大气候环境不好,学生要学到一点知识确实是不容易。学生要学到一点知识只有靠自觉和有良好的家庭教育。
所庆幸的是,范圣芝的养父范云丰很有远见,他认为“文革”的教育模式是害人子弟,他的养父言语不多,为人处事稳重,深知“文革”不能随意发表个人观点,否则言语有失会上纲上线,弄不好会成为批斗对象,只有管教好自己的孩子,规定不许自己的孩子参加文革大串联活动,晚上不许出门,偶尔看电影要有家长陪同方可(那个年代私人家庭没有电视),晚上必须在家读书、看书、学习,不明白的问题向老师请教。
更庆幸的是他有两位好老师,语文老师、班主任朱源星,数学老师罗建强。
1969年夏季,石人嶂钨矿职工子弟中学的学生在班主任朱源星老师的带领下,来到矿区附近的始兴县顿岗镇寨东大队与贫下中农“三同”一个月,接受贫下中农再教育,开展忆苦思甜活动。在“三同”一个月的日子里,朱老师与范圣芝同睡一床,这在几十个学生中,显得朱老师对范圣芝更为关爱。范圣芝勤学好问,白天与贫下中农同劳动,晚上睡觉前向朱老师请教写作知识,朱老师耐心辅导,范圣芝写的一篇谈忆苦思甜的感想作文在用到“旧社会天下乌鸦一般黑,地主阶级残酷剥削贫下中农,……。”朱老师说:“把旧社会比喻为天下乌鸦一般黑,这个词用得好。”经朱老师辅导修改后,范圣芝写的这篇谈忆苦思甜的感想作文在班上作为范文。
范圣芝对数学知识更是有浓厚的兴趣,上数学课他特别认真听讲,做作业工整,每次作业的评语都打一个“好”(作业本至今保存完好,是珍贵的纪念物)。那时,反对分数挂帅,作业一般不打分,只有测试才打分。测试的题量不多,一般只有5道题左右,每题20分左右,范圣芝每次测试都达95—100分,数学成绩全班长期排名第一。其他同学大多数不及格,0分的也不少(基础不好的学生很容易得0分,因为都是大题,没有选择与填空题)。测试不及格或得0分,不会受到老师任何批评,多数学生也不会以此为耻,反而觉得无所谓,很正常,因为那时红卫兵小将可以造老师的反,当时处在“文革”的大气候环境,上层视有造反精神的红卫兵小将思想最红,学习成绩不是重要的。
范圣芝碰到不懂的数学问题就向罗老师请教,罗老师精心辅导,让范圣芝掌握了解二次方程的知识和三角函数的知识。范圣芝好奇心强,问:“掌握解二次方程的知识后,下一步就可以学会和掌握解三次方程的知识了?”然而,罗老师说:“解三次方程问题,就是大学数学系的学生也不容易撑握。”范圣芝找到课外读物,对卡尔丹公式有了一定的了解和认识,用卡尔丹公式解三次方程确实是解题过程较复杂,不太好掌握,解题速度较慢。能否找到比卡尔丹公式更实用的解三次方程的公式呢?这个问题一直埋藏在他的心里。那时他还没有能力解决这个问题,但他知道,只要扎实打好数学基础,才有能力探研著名难题。因而范圣芝把学习数学当成乐趣,为了探研出比卡尔丹公式更实用的公式而扎实地打好数学基础。
1975年,祖国大地的广播频繁地播放毛主席的“世上无难事,只要肯登攀”这句名诗。范圣芝铭记这句名诗,把“世上无难事,只要肯登攀”作为座右铭。
1978年,祖国迎来了科学的春天,23岁的范圣芝走上中学数学教师的工作岗位,正是旺盛的金色年华,他倍加珍惜金色年华,加倍努力学习和研究。
范盛金当中学数学教师后,探讨出了中学生容易掌握的卡尔丹公式的简洁证明方法,撰写了:“运用韦达定理证明卡尔丹公式之探讨”发表在《教学月刊》(中学理科版),1990年第3期(国内统一刊号:CN33-1046),范盛金,运用韦达定理证明卡尔丹公式之探讨。
卡尔丹公式是世界著名的公式,具有权威性,可是用卡尔丹公式解三次方程确实是比较复杂,范盛金相信权威,但他不迷信权威,如何能找到比卡尔丹公式更实用的一元三次方程求根公式?范盛金潜入数学的海洋,数学的海底世界丰富多彩,数学美无处不存在,范盛金设想着用数学美的方法来研究和推导出比卡尔丹公式更为实用的一元三次方程求根公式,并为实现这个设想而努力探索。
1986年,范盛金提出猜想,可以用
重根判别式:
A=b^2-3ac;
B=bc-9ad;
C=c^2-3bd,
总判别式:
Δ=B^2-4AC。
来构成简明实用的一元三次方程新求根公式,并建立新判别法。
为了解决这个猜想,范盛金借用计算器用一些数据来进行分析。计算器可是帮了大忙,从一些数据中产生了灵感,从而判断存在简明实用的一元三次方程新求根公式,问题是如何找到和证明。
1988年,范盛金实现了这一设想,完成了一元三次方程新求根公式即盛金公式的推导,并建立了新判别法即盛金判别法,同时提出了盛金定理。
大学恩师[大学恩师]
数学教授:黄国泰,原海南省教育厅长;
数学教授:符霖,原海南师范学院教授;
数学老师:汪一湘,原《海南师范学院学报》(自然科学版)责任编辑。
1987年12月上旬,范盛金把研究得出的结论“新判别法和新公式”寄到《海南师范学院学报》编辑部,并说明推导过程较复杂,因此没有寄来,咨询是否有发表的意义。1988年元月18日,编辑部汪一湘老师复函:
范圣芝同志:
你好!你寄来的“一元三次方程的根的新判别法及其新解法”一文已收阅。我们认为该判别法是有一定意义的。但是我们没有收到新判别法和新公式的证明,因而不知道你的论断是否有依据。因此,请你把结果的依据一并证明(不论多繁杂,也不要理篇幅)寄给编辑部。多谢!
海南师范学院学报编辑部
汪一湘
元月18日
范圣芝是1981年改名范盛金,范盛金这个名已经用了7年,范盛金是想用过去的名范圣芝来作为笔名发表这篇论文。范盛金的朋友开玩笑建议用范盛金这个名,因为有实用价值的数学公式在实际应用中人们会冠上发明者的名,应该要有一个好听的名,圣芝公式不好听,盛金公式较好听。范盛金觉得有道理,后来就用范盛金这个名发表这篇论文。
在投稿咨询之前,范盛金不认识汪一湘老师,也不认识黄国泰教授和符霖教授。
1989年寒假期间,黄国泰教授和符霖教授到函授班来上数学课,这样才开始认识。因为黄国泰教授主管《海南师范学院学报》(自然科学版)的工作,之前知道范盛金向《学报》咨询投稿之事,范盛金把研究情况向黄教授作了汇报,黄教授很支持。符教授在繁忙的工作中抽空对范盛金的这篇论文审稿并按发表论文的格式要求作了具体的修改和指导并推荐发表。
1989年元月13日汪一湘老师给范盛金的复函:
范盛金老师:
你好!你的“一元三次方程的新求根公式和新判别法”一文的第二次修改稿早已收到,并已拣字排版,由于印刷厂方面的原因,稿件不能及时印出,估计开学后不久就能和你见面,望谅。我们这次的稿子很挤,页数高达一百多页(平时只有80多页),按理是优先本校教师,考虑到你的热情和钻研科学的精神,我们增页,以示鼓励。望你更上一层楼。
关于寄一些书的问题,由于新华书店也很少有高等教育的书,因此很难如愿。如果你有空来海口,届时我再给你想办法借一些给你。
祝好!
汪一湘
13/元月
“一元三次方程的新求根公式和新判别法”一文排版后,汪一湘老师亲自校对。汪老师在一次意外的事故离开了我们,范盛金心里一直铭记汪老师对他的帮助和关怀,精心地保管好汪老师给他的信件,作为最珍贵的永久纪念。
学术成就范盛金研究出比世界著名的卡尔丹公式更为实用的一元三次方程求根公式——盛金公式,并建立了简洁优美的判别法——盛金判别法,同时提出了盛金定理。
这一研究成果,于1989年12月发表在《海南师范学院学报(自然科学版)》(第2卷,第2期;1989年12月,中国海南。国内统一刊号:CN46-1014),第91—98页。范盛金,一元三次方程的新求根公式与新判别法。(NATURAL SCIENCE JOURNAL OF HAINAN TEACHERES COLLEGE , Hainan Province, China. Vol. 2, No. 2;Dec,1989), A new extracting formula and a new distinguishing means on the one variable cubic equation. Fan Shengjin. PP•91—98 .
一元三次方程aX^3+bX^2+cX+d=0,(a,b,c,d∈R,且a≠0)。
重根判别式:
A=b^2-3ac;
B=bc-9ad;
C=c^2-3bd,
总判别式:
Δ=B^2-4AC。
盛金判别法:
①:当A=B=0时,方程有一个三重实根;
②:当Δ=B^2-4AC>0时,方程有一个实根和一对共轭虚根;
③:当Δ=B^2-4AC=0时,方程有三个实根,其中有一个两重根;
④:当Δ=B^2-4AC<0时,方程有三个不相等的实根。
盛金判别法体现了数学的有序、对称、和谐与简洁美。盛金判别法具有一元二次方程根的判别法的表达形式,简明易记、解题直观,所体现的数学美,令人惊叹!
盛金公式具有可靠性、直观性、简洁性、准确性、高效性、广泛性、实用性。
特别是盛金公式③,简明易记,不存在开方(此时的卡尔丹公式仍存在开立方),手算解题效率高。
当Δ=B^2-4AC=0时,盛金公式③:
X⑴=-b/a+K;
X⑵=X⑶=-K/2,
其中K=B/A,(A≠0)。
盛金公式③被称为超级简便的公式。
[精彩例题]
解方程X^3-67.4X^2+1417.92X-9539.712=0
(用科学计算器辅助运算)
解:a=1,b=-67.4,c=1417.92,d=-9539.712。
A=289;B=-9710.4;C=81567.36,
Δ=0。
根据盛金判别法,此方程有三个实根,其中两个相等。
应用盛金公式③求解。
K=—33.6。
把有关值代入盛金公式③,得:
X⑴=33.8;X⑵=X⑶=16.8。
经检验,结果正确。
当Δ=B^2-4AC<0时,盛金公式④:
X⑴=(-b-2A^(1/2)cos(θ/3))/(3a);
X(2,3)=(-b+A^(1/2)(cos(θ/3)±3^(1/2)sin(θ/3)))/(3a),
其中θ=arccosT,T=(2Ab-3aB)/(2A^(3/2)),(A>0,-1<T<1)。
盛金公式④是漂亮的三角式,解题直观、准确。
而此时,卡尔丹公式存在虚数性,虽然可转换为三角式解题,但不直观。
[精彩例题]
解方程X^3-70.5X^2+1533.54X-10082.44=0
(用科学计算器辅助运算)
解:a=1,b=-70.5,c=1533.54,d=-10082.44。
A=369.63;B=-17372.61;C=219308.8716,
Δ=-22444974.63<0。
根据盛金判别法,此方程有三个不相等的实根。
应用盛金公式④求解。
θ=90°。
把有关值代入盛金公式④,得:
X⑴=12.4;X⑵=34.6;X⑶=23.5。
经检验,结果正确。
盛金定理清晰地回答了盛金公式解三次方程中的疑惑问题。如:
盛金定理8:当Δ<0时,盛金公式④一定不存在A≤0的值。(此时,适用盛金公式④解题)。
盛金定理9:当Δ<0时,盛金公式④一定不存在T≤-1或T≥1的值,即T出现的值必定是-1<T<1。
盛金定理表明:盛金公式始终保持有意义。任意实系数的一元三次方程都可以运用盛金公式直观求解。
[精彩例题]
判别方程X^3-1.3X^2+0.9X-9.7=0的解
解:a=1,b=-1.3,c=0.9,d=-9.7。
A=-1.01<0。
根据盛金定理5:当A<0时,则必定有Δ>0。
根据盛金判别法,当Δ>0时,方程有一个实根和一对共轭虚根。
范盛金在研究解三次方程问题的基础上,进而深入研究解五次方程问题。
根式解一元五次方程问题是世界数学史上的最著名难题之一。根据阿贝尔定理, 一般五次方程不存在根式表达的求根公式。范盛金对解五次方程问题进行了深入探索与研究,给出了可化为(X+r)^5=R的求根公式,并提出了具有数学美的一般式一元五次方程求根公式的猜想表达式。
范盛金给出的“可化为(X+b/(5a))^5=R的一元五次方程之求根公式”如下:
一元五次方程:aX^5+bX^4+cX^3+dX^2+eX+f=0
(a,b,c,d,e,f∈R,且a≠0)
重根判别式:
A=2b^2—5ac;
B=c^2—2bd;
C=d^2—2ce;
D=2e^2—5df。
当A=B=C=D=0时,公式⑴:
X⑴=X⑵=X⑶=X⑷=X⑸=-b/(5a)=-c/(2b)=-d/c=-2e/d =-5f/e。
当A=B=C=0,D≠0时,公式⑵:
X⑴=(-b+Y^(1/5))/(5a);
X(2,3)=(-b+Y^(1/5)(-1+√5)/4)/(5a)±Y^(1/5)√(5+√5)√2i/4/(5a);
X(4,5)=(-b+Y^(1/5)(-1-√5)/4)/(5a)±Y^(1/5)√(5-√5)√2i/4/(5a)。
其中Y=(be—25af)(5a)^3,i^2=-1。
这种表达式体现了数学的有序、对称、和谐与简洁美。
无论a、b、R为任何实数,展开(X+b/(5a))^5=R ,都可以用公式⑵直观求解。
重根判别式最简记忆符号:5a…2b…c…d…2e…5f。
由最简记忆符号可快速得出重根判别式:
A=2b^2—5ac;B=c^2—2bd;C=d^2—2ce;D=2e^2—5df。
[精彩例题]
例1、解方程1024X^5+3840X^4+5760X^3+4320X^2+1620X+243=0
解:a=1024,b=3840,c=5760,d=4320,e=1620,f=243。
∵A=B=C=D=0,∴此方程有一个五重实根。
应用公式⑴解得:
X(1)=X(2)=X(3)=X(4)=X(5)=-3/4。
经检验,结果正确(检验过程略)。
例2、解方程X^5+15X^4+90X^3+270X^2+405X—1419614=0
解:a=1,b=15,c=90,d=270,e=405,f=-1419614。
∵A=0;B=0;C=0,D≠0,∴此方程有一个实根和两对共轭虚根。
应用公式⑵求解。
Y=(be—25af)(5a)^3=4437053125; Y^(1/5)=85。
把有关值代入公式⑵,得:
X(1)=14;
X(2,3)=(-29-17×5^(1/2))/4±17(5-5^(1/2))^(1/2)2^(1/2)i/4;
X(4,5)=(-29+17×5^(1/2))/4±17(5+5^(1/2))^(1/2)2^(1/2)i/4。
这是根式表达的精确结果。为了方便用韦达定理检验,取近似结果为宜,就是:
X(1)=14;
X(2,3)=-16.7532889±9.992349289i;
X(4,5)=2.253288904±16.16796078i。
经检验,解得的结果正确(检验过程略)。
范盛金提出简明的、具有数学美的一般五次方程求根公式的猜想表达式是:
一元五次方程aX^5+bX^4+cX^3+dX^2+eX+f=0
(a,b,c,d,e,f∈R,且a≠0)
猜想求根公式:
X(1)=(-b+(Y1)^(1/5)+(Y2)^(1/5)+(Y3)^(1/5)+(Y4)^(1/5))/(5a);
X(2,3)=(-b+((Y1)^(1/5)+(Y2)^(1/5))M+((Y3)^(1/5)+(Y4)^(1/5))N
±(((Y1)^(1/5)-(Y2)^(1/5))G+((Y3)^(1/5)-(Y4)^(1/5))H)i)/(5a);
X(4,5)=(-b+((Y1)^(1/5)+(Y2)^(1/5))N+((Y3)^(1/5)+(Y4)^(1/5))M
±(((Y1)^(1/5)-Y(Y2)^(1/5))H+((Y3)^(1/5)-(Y4)^(1/5))G)i)/(5a),
其中:
i^2=-1,
M=(-1+5^(1/2))/4;
N=(-1-5^(1/2))/4,
G=(5+5^(1/2))^(1/2)2^(1/2)/4;

H=(5-5^(1/2))^(1/2)2^(1/2)/4。
Y1、Y2、Y3、Y4是方程Y^4+PY^3+QY^2+RY+S=0的解。
(P、Q、R、S是由重根判别式构成)
范盛金提出的这个猜想求根公式的特点是:
只要推导出一元四次方程Y^4+PY^3+QY^2+RY+S=0,根式解一般五次方程问题便得到解决,因为解一元四次方程有费拉里公式,这个猜想具有科学性。
完整地解决根式解五次方程的问题,仍需漫长的过程。
范盛金用数学美的方法把复杂的数学问题变为简单和直观化,被誉为解高次方程的数学美大师。
社会评价[A]
解三次方程问题是世界数学史上的著名问题,虚数概念的引进、复数理论的建立,就是起源于解三次方程问题。长期以来,解三次方程问题是热门话题。现在的高中生及大学生大多数不会求解三次方程,有些学生只能解一些相当简单的三次方程,复杂一点的三次方程就解不出了,原因是他们没有掌握(并不知道)实用的三次方程求根公式。盛金公式对研究解三次方程问题将发挥积极作用。
——摘自范盛金自评
由最简记忆符号3a…b…c…3d,可快速地得到重根判别式A=b^2-3ac;B=bc-9ad;C=c^2-3bd,由A、B、C构成总判别式Δ=B^2-4AC,重根判别式与总判别式的表达式最简(非常美妙)。从最简记忆符号3a…b…c…3d来判断,盛金公式与判别法的表达式最简,因此,不存在比盛金公式与判别法更简表达式的三次方程求根公式与判别法。
——摘自范盛金自评
盛金公式解题法不仅仅是表现在解题直观、效率高,尤其对人的智力开发即启发人运用基础知识进行创新思维有着深远的意义。
——摘自范盛金自评
盛金公式与判别法及定理形成了一套完整的、简明的、实用的、具有数学美的解三次方程的理论体系,对研究解高次方程问题有一定的意义。
——摘自范盛金自评
我们电力工程上在架空线状态方程中,运用一元三次方程较多,我不仅上网查过多种公式,好多是有问题的,根本就解得不到准确值,在一些经典文章包括已发表的杂志上,好多只是列出公式,未经过实际数据的测算,好多公式,作者说绝对准确,但一经测算就有问题了,我运用盛金公式后,第一次得到了准确数据!我觉得盛金公式具有广泛性,而且所得数据准确!
——摘自山西省电力公司送变电工程公司王建平评价
盛金公式ㄉ岀现代表中国人民ㄉ聪明才智,有能力解决数学史上ㄉ难题,是可喜可贺ㄉ大事,希望多出现像范盛金这样ㄉ智慧型人物,在数学史上为中国人民争取光荣。
——摘自台湾省一网民评价
盛金公式的程序实现比卡尔丹公式方便得多。
——摘自一网民评价
这(指盛金公式)就是传说中的超级简便的一元三方程的求根公式。
——摘自一网民(中学生)评价
盛金公式与判别法简洁优美。
——摘自一网民评价
范盛金太油菜了(太有才了)。
——摘自一网民评价
范盛金是个牛人。
——摘自一网民评价
在不方便用数学软件的情况下,确实很实用。这(指盛金公式)是一个好公式,能在1989年搞出来确实很厉害。
——摘自一网民评价
[B]
架空送电线路设计计算软件,用盛金公式替代了牛顿迭代法求解三次方程,效率更高。
在Excel中解一元三次方程,采用盛金公式比较好用Excel来转化其算法。
[C]
解三次方程的实际应用中,盛金公式受到专家、学者的赏识。如《工程力学》第26卷第8期(2009年8月),第152页,有一个复杂的一元三次方程:“······式(2)是一个三次方程,本文采用盛金公式求解。”(《浅圆仓散料侧压力的极限分析上限方法》(国家自然科学基金重点项目)作者:付建宝,博士生;年廷凯,副教授,博士;栾茂田,教授,博士,博导;杨庆,教授,博士,博导)
[D]
盛金公式与判别法在教学中的应用:
1、可激发学生的创新意识和创新思维。
2、可方便学生解决三次方程方面的实际问题。
3、可让学生更为熟练地掌握和操作科学计算器。
4、可让学生受到数学美的熏陶,激发学生的学习热情与兴趣。
5、普遍受到好评,如:盛金公式与判别法及定理简洁、优美、易记,解题直观、准确、高效,非常好用!
[E]
一些大学生在网上谈学习盛金公式解题法的心得与体会:
★这个公式(盛金公式)太好用了!虽然不知道推导过程。但是我再(在)自己的作业中引用了这样的公式。值得吃惊的是国外的那个老师反而下了一跳,问我怎么有这样的结论?
——摘自一名大学生(2007年)在网上谈学习盛金公式解题法的心得与体会
★日前上课突然要解1元3次方程(当时用分解因式法做到出黎),先发觉自己读佐10几年书,如果比人问起“1元3次方程点求解啊?”都系口哑哑,所以我决心要学识1套系统既方法,黎应付解1元3次既问题。(分解因式固然简单,可惜适用范围非常有限,我唔满足)经过2日既努力,终于比我发现佐1个万能既解法,就系盛金公式。呢套公式表面上睇起身好繁杂,不过其实好简单,好容易上手。而通过适度既练习,我依家已经基本上熟悉晒成个方法,可以用距黎解题啦,哈哈哈。最后,膜拜吓范盛金,创造佐呢套万能既系统方法! Table2008 发表于 2010-4-23 18:37
就几适合我用咯。
可以通过盛金判别式黎知道方程根既情况,由范盛金提出。
简单黎讲,就系先通过盛金判别式黎判断某1元3次方程根既情况(有1个3重根,1个实根加1对共轭虚根,3个不同实根,同埋1个实根加1个两重根,呢4种情况),然后每种情况有对应既1条盛金公式求解(所以盛金公式有4条)。 Table2008 发表于 2010-4-23 21:25
以上是粤语文字,翻译成普通话文字为:
日前上课突然要解一元三次方程(当时用分解因式法能解出来),才发觉自己读了十几年书,如果被人问起“一元三次方程如何求解啊?”都是哑口无言。所以我决心要学会一套系统的方法,来应付解一元三次(方程)的问题。(分解因式固然简单,可惜适用范围非常有限,我不满足)经过两天的努力,终于被我发现了一个万能的解法,就是盛金公式。这套公式表面上看起来好繁杂,不过其实好简单,好容易学会。而通过适度的练习,我现在已经基本上熟悉了整个方法,可以用他来解题啦,哈哈哈。最后,对范盛金表示敬意,创造出了这套万能的系统方法! Table2008 发表于 2010-4-23 18:37
(盛金公式解题法)就很适合我用呀。
可以通过盛金判别式来知道方程根的情况,由范盛金提出。
简单来讲,就是先通过盛金判别式来判断某一元三次方程根的情况(有一个三重根,一个实根和一对共轭虚根,三个不同实根,以及一个实根和一个两重根,这四种情况),然后每种情况有对应的一条盛金公式求解(所以盛金公式有四条)。 Table2008 发表于 2010-4-23 21:25
——摘自一名广东大学生在网上与网友聊天谈学习盛金公式解题法的心得与体会
资料来源:互动百科“范盛金词条”