九点圆

王朝百科·作者佚名  2009-10-24
窄屏简体版  字體: |||超大  

九点圆

★三角形三边的中点,三高的垂足和三个欧拉点[连结三角形各顶点与垂心所得三线段的中点]九点共圆[通常称这个圆为九点圆[nine-point circle],或欧拉圆,费尔巴哈圆.

九点圆是几何学史上的一个著名问题,最早提出九点圆的是英国的培亚敏.俾几[Benjamin Beven],问题发表在1804年的一本英国杂志上.第一个完全证明此定理的是法国数学家彭赛列[1788-1867].也有说是1820-1821年间由法国数学家热而工[1771-1859]与彭赛列首先发表的.一位高中教师费尔巴哈[1800-1834]也曾研究了九点圆,他的证明发表在1822年的《直边三角形的一些特殊点的性质》一文里,文中费尔巴哈还获得了九点圆的一些重要性质[如下列的性质3],故有人称九点圆为费尔巴哈圆.

九点圆具有许多有趣的性质,例如:

1.三角形的九点圆的半径是三角形的外接圆半径之半;

2.九点圆的圆心在欧拉线上,且恰为垂心与外心连线的中点;

3.三角形的九点圆与三角形的内切圆,三个旁切圆均相切[费尔巴哈定理].

4.九点圆是一个垂心组共有的九点圆,所以九点圆共与四个内切圆,十二个旁切圆相切.

5.九点圆心(V),重心(G),垂心(H),外心(O)四点共线且HG=2OG OG=2VG OH=2OV

九点圆圆心的重心坐标的计算跟垂心、外心一样麻烦。

事先定义的变量与垂心、外心一样:

d1,d2,d3分别是三角形三个顶点连向另外两个顶点向量的点乘(句子很长^_^)。

c1=d2d3,c2=d1d3,c3=d1d2;c=c1+c2+c3。

重心坐标:( (2c1+c2+c3)/4c,(2c2+c1+c3)/4c,(2c3+c1+c2)/4c )。

 
 
 
免责声明:本文为网络用户发布,其观点仅代表作者个人观点,与本站无关,本站仅提供信息存储服务。文中陈述内容未经本站证实,其真实性、完整性、及时性本站不作任何保证或承诺,请读者仅作参考,并请自行核实相关内容。
 
 
© 2005- 王朝網路 版權所有 導航