完全立方差公式:
(a-b)^3=a^3-3a^2b+3ab^2-b^3或(a-b)^3=a^3-3(a^2*b)+3(a*b^2)-b^3
注意:在(a-b)^3=a^3-3a^2b+3ab^2-b^3中,按第一个字母排列后它的号是“+、-.+、-”;它是一个齐次式(每一项都是3次);它的系数是1、-3、+3、-1;结果是四项式
完全立方差公式分解
(a-b)^3=(a-b)(a-b)(a-b)=(a^2-2ab+b^2)(a-b)=a^3-3a^2b+3ab^2-b^3
两数差乘以它们的平方和与它们的积的和等于两数的立方差。
即a^3-b^3=(a-b)(a^2+ab+b^2)
证明如下:
立方差
(a-b)^3=a^3-3a^2b+3ab^2-b^3
所以a^3-b^3=(a-b)^3-[-3(a^2)b+3ab^2]=(a-b)(a-b)^2+3ab(a-b)
=(a-b)(a^2-2ab+b^2+3ab)=(a-b)(a^2+ab+b^2)
类似地,我们有立方和公式及其推广:
(1) a^3+b^3=(a+b)(a^2-ab+b^2)
(2) a^n+b^n=(a+b)[a^(n-1)-a^(n-2)×b+...+(-1)^(r-1)×a^(n-r)×b^(r-1)+...+b^(n-1)](n为奇数) (后面括号中各项式的幂之和都为n-1)
a^n表示a的n次方