第一余弦定理

王朝百科·作者佚名  2010-09-22
窄屏简体版  字體: |||超大  

任意三角形射影定理任意三角形射影定理又称“第一余弦定理”:

设⊿ABC的三边是a、b、c,它们所对的角分别是A、B、C,则有

a=b·cosC+c·cosB,

b=c·cosA+a·cosC,

c=a·cosB+b·cosA。

注:以“a=b·cosC+c·cosB”为例,b、c在a上的射影分别为b·cosC、c·cosB,故名射影定理。

证明1:设点A在直线BC上的射影为点D,则AB、AC在直线BC上的射影分别为BD、CD,且

BD=c·cosB,CD=b·cosC,∴a=BD+CD=b·cosC+c·cosB.同理可证其余。

证明2:由正弦定理,可得:b=asinB/sinA,c=asinC/sinA=asin(A+B)/sinA=a(sinAcosB+cosAsinB)/sinA

=acosB+(asinB/sinA)cosA=a·cosB+b·cosA.同理可证其它的。

 
 
 
免责声明:本文为网络用户发布,其观点仅代表作者个人观点,与本站无关,本站仅提供信息存储服务。文中陈述内容未经本站证实,其真实性、完整性、及时性本站不作任何保证或承诺,请读者仅作参考,并请自行核实相关内容。
 
 
© 2005- 王朝網路 版權所有 導航