《测圆海镜》由中国金、元时期数学家李冶所着,成书于1248年。全书共有12卷,170问。这是中国古代论述容圆的一部专著,也是天元术的代表作。
《测圆海镜》所讨论的问题大都是已知勾股形而求其内切圆、旁切圆等的直径一类的问题。勾股形的解法是古代传统数学的重要内容之一。
此外,在中国古代数学的发展中,天元术起着重要的作用。在《测圆海镜》问世之前,我国虽有文字代表未知数用以布列方程和多项式的工作,但是没有留下很有系统的记载。李冶在《测圆海镜》中系统而概括地总结了天元术,使文词代数开始演变成符号代数。
所谓天元术,就是设“天元一”为未知数,根据问题的已知条件,列出两个相等的多项式,经相减后得出一个高次方程式,称为天元开方式,这与现代设x为未知数列方程一样。欧洲的数学家,只有到了16世纪以后才完全作到这一点。《测圆海镜》全书170 题,基本上都是(依据《识别杂记》)列出天元式,求出勾股容圆问题的解。
李冶在40岁时便放弃功名,终生从事数学研究。他反对象数神秘主义,认为数学来自客观的自然界,这些观点反映在他自己写的“《测圆海镜》”序中,这在当时是十分可贵的,也是他在数学上取得重大成就的主要因素之一。
清代阮元认为《测圆海镜》是“中土数学之宝书”,李善兰称赞它是“中华算书实无有胜于此者”。