以等边三角形每个顶点为圆心,以边长为半径,在另两个顶点间作一段弧,三段弧围成的曲边三角形就是勒洛三角形(reuleaux triangle ),也称鲁洛三角形
勒洛三角形。勒洛三角形是由德国机械工程专家,机构运动学家勒洛(1829~1905)首先发现的,并以他的名字命名的。定宽曲线和定宽性定宽曲线的概念:具有(类似圆的)定宽性的曲线称为定宽曲线。
定宽性,几何上的理解是:将一个圆放在两条平行线中间,使之与这两平行线相切。则可以做到:无论这个圆如何运动,它还是在这两条平行线内,并且始终与这两条平行线相切。
勒洛三角形就是典型的定宽曲线。勒洛三角形的应用
在美国旧金山,有一些市政检修井井盖的形状就是勒洛三角形,其最大优点是这种形状的井盖绝不会掉到井里去。
此外,一种基于鲁洛三角形的变体的设备,它能钻出方孔来,其“方度”非常之好。