定义如果一个三角形和一个矩形满足条件:三角形的一边与矩形的一边重合,且三角形的这边所对的顶点在矩形这边的对边上,则称这样的矩形为三角形的“友好矩形”。

题目2005年资阳中考题读以下短文,然后解决下列问题:
如果一个三角形和一个矩形满足条件:三角形的一边与矩形的一边重合,且三角形的这边所对的顶点在矩形这边的对边上,则称这样的矩形为三角形的“友好矩形”. 如图8①所示,矩形ABEF即为△ABC的“友好矩形”. 显然,当△ABC是钝角三角形时,其“友好矩形”只有一个.
(1) 仿照以上叙述,说明什么是一个三角形的“友好平行四边形”;
(2) 如图8②,若△ABC为直角三角形,且∠C=90°,在图8②中画出△ABC的所有“友好矩形”,并比较这些矩形面积的大小;
(3) 若△ABC是锐角三角形,且BC>AC>AB,在图8③中画出△ABC的所有“友好矩形”,指出其中周长最小的矩形并加以证明.考察对象及类型

考察对象:初二~初三
考察知识:矩形,三角形等几何知识答案(1) 如果一个三角形和一个平行四边形满足条件:三角形的一边与平行四边形的一边重合,三角形这边所对的顶点在平行四边形这边的对边上,则称这样的平行四边形为三角形的“友好平行四边形”.

(2)此时共有2个友好矩形,如图的BCAD、ABEF. 易知,矩形BCAD、ABEF的面积都等于△ABC面积的2倍,所以△ABC的“友好矩形”的面积相等.
(3)此时共有3个友好矩形,如图的BCDE、CAFG及ABHK,其中的矩形ABHK的周长最小