角平分线定理

王朝百科·作者佚名  2009-12-06
窄屏简体版  字體: |||超大  

■角平分线的定义:从一个角的顶点引出一条射线,把这个角分成两个相等的角,这条射线叫做这个角的角平分线。

■三角形的角平分线定义:三角形顶点到其内角的角平分线交对边的点连的一条线段,叫三角形的角平分线。

【注】三角形的角平分线不是角的平分线,是线段。角的平分线是射线。

■拓展:三角形的三条角平分线相交于一点,并且这一点到三条边的距离相等!(即内心)。

■定理1:在角平分线上的任意一点到这个角的两边距离相等。

■逆定理:在一个角的内部(包括顶角),且到这个角的两边距离相等的点在这个角的角平分线上。

■定理2:三角形一个角的平分线分对边所成的两条线段与这个角的两边对应成比例,

如:在△ABC中,AD平分∠BAC,则BD:DC=AB:AC

证明:

任意△ABC,AD为∠BAC的角平分线

由正弦定理可知

BD/sin∠BAD=AD/sinB

DC/sin∠CAD=AD/sinC

由上式可以得

BD/DC=sinC/sinB

又因为AB/sinC=AC/sinB

所以sinC/sinB=AB/AC

所以BD/DC=AB/AC

 
 
 
免责声明:本文为网络用户发布,其观点仅代表作者个人观点,与本站无关,本站仅提供信息存储服务。文中陈述内容未经本站证实,其真实性、完整性、及时性本站不作任何保证或承诺,请读者仅作参考,并请自行核实相关内容。
 
 
© 2005- 王朝網路 版權所有 導航