基本信息作者: (日)小平邦彦
ISBN: 9787115178404
页数: 404
定价: 59.0
出版社: 人民邮电出版社
丛书: 图灵原版数学·统计学系列
装帧: 平装
出版年: 2008-6-1
图书简介本书讲述了复变函数的经典理论。作者用易于理解的方式严密介绍基础理论,强调几何观点,避免了一些拓扑学难点。书中首先从拓扑上较简单的情形论证了柯西积分公式,并引出连续可微函数的基本性质。然后阐述共形映射、解析延拓、黎曼映射定理、黎曼面及其结构,以及闭黎曼面上的解析函数等。书中包含大量的图示和丰富的例子,并附有习题,可以帮助读者增强对课程的理解。 本书可作为高等院校理工科专业复分析的入门教材,也可作为更高级学习研究的参考书。
图书目录1 Holomorphic functions
1.1 Holomorphic functions
1.2 Power series
1.3 Integrals
1.4 Properties ofholomorphic functions
2 Cauchy's Theorem
2.1 Piecewise smooth curves
2.2 Cellular decomposition
2.3 Cauchy's Theorem
2.4 Differentiability and homology
3 Conformal mappings
3.1 Conformal mappings
3.2 The Riemann sphere
3.3 Linear fractional transformations
4 Analytic continuation
4.1 Analytic continuation
4.2 Analytic continuation along curves
4.3 Analytic continuation by integrals
4.4 Cauchy's Theorem (continued)
5 Riemann's Mapping Theorem
5.1 Riemann's Mapping Theorem
5.2 Correspondence of boundaries
5.3 The principle of reflection
6 Riemann surfaces
6.1 Differential forms
6.2 Riemann surfaces
6.3 Differential forms on a Riemann surface
6.4 Dirichlet's Principle
7 The structure of Riemann surfaces
7.1 Planar Riemann surfaces
7.2 Compact Riemann surfaces
8 Analytic functions on a closed Riemann surface
8.1 Abelian differentials of the first kind
8.2 Abelian differentials of the second and third kind
8.3 The Riemann-Roch Theorem
8.4 Abel's Theorem
Problems
Index