分享
 
 
 

几何分析手册

王朝百科·作者佚名  2012-03-05
窄屏简体版  字體: |||超大  

图书信息书 名: 几何分析

手册

作者:季理真

出版社:高等教育出版社

出版时间: 2010年4月1日

ISBN: 9787040288834

开本: 16开

定价: 78.00元

内容简介《几何分析手册(第2卷)》内容简介:The marriage of geometry and analysis, in particular non-linear differential equations, has been very fruitful. An early deep application of geometric analysis is the celebrated solution by Shing-Tung Yau of the Calabi conjecture in 1976. In fact, Yau together with many of his collaborators developed important techniques in geometric analysis in order to solve the Calabi conjecture.

作者简介编者:(美国)季理真 等

图书目录Heat Kernels on Metric Measure Spaces with Regular Volume Growth

Alexander Griqor'yan

1 Introduction

1.1 Heat kernel in Rn

1.2 Heat kernels on Riemannian manifolds

1.3 Heat kernels of fractional powers of Laplacian

1.4 Heat kernels on fractal spaces

1.5 Summary of examples

2 Abstract heat kernels

2.1 Basic definitions

2.2 The Dirichlet form

2.3 Identifying in the non-local case

2.4 Volume of balls

3 Besov spaces

3.1 Besov spaces in Rn

3.2 Besov spaces in a metric measure space

3.3 Embedding of Besov spaces into HSlder spaces.

4 The energy domain

4.1 A local case

4.2 Non-local case

4.3 Subordinated heat kernel

4.4 Bessel potential spaces

5 The walk dimension

5.1 Intrinsic characterization of the walk dimension

5.2 Inequalities for the walk dimension

6 Two-sided estimates in the local case

6.1 The Dirichlet form in subsets

6.2 Maximum principles

6.3 A tail estimate

6.4 Identifying in the local case

References

A Convexity Theorem and Reduced Delzant Spaces Bong H. Lian, Bailin Song

1 Introduction

2 Convexity of image of moment map

3 Rationality of moment polytope

4 Realizing reduced Delzant spaces

5 Classification of reduced Delzant spaces

References

Localization and some Recent Applications

Bong H. Lian, Kefeng Liu

1 Introduction

2 Localization

3 Mirror principle

4 Hori-Vafa formula

5 The Marino-Vafa Conjecture

6 Two partition formula

7 Theory of topological vertex

8 Gopakumar-Vafa conjecture and indices of elliptic operators..

9 Two proofs of the ELSV formula

10 A localization proof of the Witten conjecture

11 Final remarks

References

Gromov-Witten Invariants of Toric Calabi-Yau Threefolds Chiu-Chu Melissa Liu

1 Gromov-Witten invariants of Calabi-Yau 3-folds

1.1 Symplectic and algebraic Gromov-Witten invariants

1.2 Moduli space of stable maps

1.3 Gromov-Witten invariants of compact Calabi-Yau 3-folds

1.4 Gromov-Witten invariants of noncompact Calabi-Yau 3-folds

2 Traditional algorithm in the toric case

2.1 Localization

2.2 Hodge integrals

3 Physical theory of the topological vertex

4 Mathematical theory of the topological vertex

4.1 Locally planar trivalent graph

4.2 Formal toric Calabi-Yau (FTCY) graphs

4.3 Degeneration formula

4.4 Topological vertex "

4.5 Localization

4.6 Framing dependence

4.7 Combinatorial expression

4.8 Applications

4.9 Comparison

5 GW/DT correspondences and the topological vertex

Acknowledgments

References

Survey on Affine Spheres

John Loftin

1 Introduction

2 Affine structure equations

3 Examples

4 Two-dimensional affine spheres and Titeica's equation

5 Monge-Ampre equations and duality

6 Global classification of affine spheres

7 Hyperbolic affine spheres and invariants of convex cones

8 Projective manifolds

9 Affine manifolds

10 Affine maximal hypersurfaces

11 Affine normal flow

References

Convergence and Collapsing Theorems in Riemannian Geometry

Xiaochun Rong

Introduction

1 Gromov-Hausdorff distance in space of metric spaces

1.1 The Gromov-Hausdorff distance

1.2 Examples

1.3 An alternative formulation of GH-distance

1.4 Compact subsets of (Met, dGH)

1.5 Equivariant GH-convergence

1.6 Pointed GH-convergence

2 Smooth limits-fibrations

2.1 The fibration theorem

2.2 Sectional curvature comparison

2.3 Embedding via distance functions

2.4 Fibrations

2.5 Proof of theorem 2.1.1

2.6 Center of mass

2.7 Equivariant fibrations

2.8 Applications of the fibration theorem

3 Convergence theorems

3.1 Cheeger-Gromov's convergence theorem

3.2 Injectivity radius estimate

3.3 Some elliptic estimates

3.4 Harmonic radius estimate

3.5 Smoothing metrics

4 Singular limits-singular fibrations

4.1 Singular fibrations

4.2 Controlled homotopy structure by geometry

4.3 The ∏2-finiteness theorem

4.4 Collapsed manifolds with pinched positive sectional curvature

5 Almost flat manifolds

5.1 Gromov's theorem on almost flat manifolds

5.2 The Margulis lemma

5.3 Flat connections with small torsion

5.4 Flat connection with a parallel torsion

5.5 Proofs——part I

5.6 Proofs——part II

5.7 Refined fibration theorem

References

Geometric Transformations and Soliton Equations

Chuu-Lian Terng "

1 Introduction

2 The moving frame method for submanifolds

3 Line congruences and Backlund transforms

4 Sphere congruences and Ribaucour transforms

5 Combescure transforms, O-surfaces, and k-tuples

6 From moving frame to Lax pair

7 Soliton hierarchies constructed from symmetric spaces

8 The U-system and the Gauss-Codazzi equations

9 Loop group actions

10 Action of simple elements and geometric transforms

References

Affine Integral Geometry from a Differentiable Viewpoint

Deane Yang

1 Introduction

2 Basic definitions and notation

2.1 Linear group actions

3 Objects of study

3.1 Geometric setting

3.2 Convex body

3.3 The space of all convex bodies

3.4 Valuations

4 Overall strategy

5 Fundamental constructions

5.1 The support function

5.3 The polar body

5.4 The inverse Gauss map

5.5 The second fundamental form

5.6 The Legendre transform

5.7 The curvature function The homogeneous contour integral

6.1 Homogeneous functions and differential forms

6.2 The homogeneous contour integral for a differential form

6.3 The homogeneous contour integral for a measure

6.4 Homogeneous integral calculus

7 An explicit construction of valuations

7.1 Duality

7.2 Volume

8 Classification of valuations

9 Scalar valuations

9.1 SL(n)-invariant valuations

9.2 Hug's theorem

10 Continuous GL(n)-homogeneous valuations

10.1 Scalar valuations

10.2 Vector-valued valuations

11 Matrix-valued valuations.

11.1 The Cramer-Rao inequality

12 Homogeneous function- and convex body-valued valuations.

13 Questions

References

Classification of Fake Projective Planes

Sai-Kee Yeung

1 Introduction

2 Uniformization of fake projective planes

3 Geometric estimates on the number of fake projective planes.

4 Arithmeticity of lattices associated to fake projective planes.

5 Covolume formula of Prasad

6 Formulation of proof

7 Statements of the results

8 Further studies

References

 
 
 
免责声明:本文为网络用户发布,其观点仅代表作者个人观点,与本站无关,本站仅提供信息存储服务。文中陈述内容未经本站证实,其真实性、完整性、及时性本站不作任何保证或承诺,请读者仅作参考,并请自行核实相关内容。
2023年上半年GDP全球前十五强
 百态   2023-10-24
美众议院议长启动对拜登的弹劾调查
 百态   2023-09-13
上海、济南、武汉等多地出现不明坠落物
 探索   2023-09-06
印度或要将国名改为“巴拉特”
 百态   2023-09-06
男子为女友送行,买票不登机被捕
 百态   2023-08-20
手机地震预警功能怎么开?
 干货   2023-08-06
女子4年卖2套房花700多万做美容:不但没变美脸,面部还出现变形
 百态   2023-08-04
住户一楼被水淹 还冲来8头猪
 百态   2023-07-31
女子体内爬出大量瓜子状活虫
 百态   2023-07-25
地球连续35年收到神秘规律性信号,网友:不要回答!
 探索   2023-07-21
全球镓价格本周大涨27%
 探索   2023-07-09
钱都流向了那些不缺钱的人,苦都留给了能吃苦的人
 探索   2023-07-02
倩女手游刀客魅者强控制(强混乱强眩晕强睡眠)和对应控制抗性的关系
 百态   2020-08-20
美国5月9日最新疫情:美国确诊人数突破131万
 百态   2020-05-09
荷兰政府宣布将集体辞职
 干货   2020-04-30
倩女幽魂手游师徒任务情义春秋猜成语答案逍遥观:鹏程万里
 干货   2019-11-12
倩女幽魂手游师徒任务情义春秋猜成语答案神机营:射石饮羽
 干货   2019-11-12
倩女幽魂手游师徒任务情义春秋猜成语答案昆仑山:拔刀相助
 干货   2019-11-12
倩女幽魂手游师徒任务情义春秋猜成语答案天工阁:鬼斧神工
 干货   2019-11-12
倩女幽魂手游师徒任务情义春秋猜成语答案丝路古道:单枪匹马
 干货   2019-11-12
倩女幽魂手游师徒任务情义春秋猜成语答案镇郊荒野:与虎谋皮
 干货   2019-11-12
倩女幽魂手游师徒任务情义春秋猜成语答案镇郊荒野:李代桃僵
 干货   2019-11-12
倩女幽魂手游师徒任务情义春秋猜成语答案镇郊荒野:指鹿为马
 干货   2019-11-12
倩女幽魂手游师徒任务情义春秋猜成语答案金陵:小鸟依人
 干货   2019-11-12
倩女幽魂手游师徒任务情义春秋猜成语答案金陵:千金买邻
 干货   2019-11-12
 
推荐阅读
 
 
 
>>返回首頁<<
 
靜靜地坐在廢墟上,四周的荒凉一望無際,忽然覺得,淒涼也很美
© 2005- 王朝網路 版權所有