
数学术语
正弦角A的对边与斜边的比叫做角A的正弦,记作sinA(由英语sine一词简写得来),即sinA=角A的对边/斜边
古代说法,正弦是股与弦的比例。
古代说的“勾三股四弦五”中的“弦”,就是直角三角形中的斜边. 股就是人的大腿,长长的,古人称直角三角形中长的那个直角边为“股”;正放的直角三角形,应是大腿站直。
正弦是股与弦的比例,余弦是余下的那条直角边与弦的比例。
正弦=股长/弦长
勾股弦放到圆里。弦是圆周上两点连线。最大的弦是直径。 把直角三角形的弦放在直径上,股就是长的弦,即正弦,勾就是短的弦,即余下的弦——余弦。
按现代说法,正弦是直角三角形的对边与斜边之比。
现代正弦公式是
sin = 直角三角形的对边比斜边.
如图,斜边为r,对边为y,邻边为x。
斜边与邻边夹角a
sin=y/r
无论y>x或y≤x
无论a多大多小可以任意大小
正弦的最大值为1 最小值为-1
三角函数
三角函数是数学中属于初等函数中的超越函数的一类函数。它们的本质是任意角的集合与一个比值的集合的变量之间的映射。通常的三角函数是在平面直角坐标系中定义的,其定义域为整个实数域。另一种定义是在直角三角形中,但并不完全。现代数学把它们描述成无穷数列的极限和微分方程的解,将其定义扩展到复数系。
由于三角函数的周期性,它并不具有单值函数意义上的反函数。
三角函数在复数中有较为重要的应用。在物理学中,三角函数也是常用的工具。
在RT△ABC中,如果锐角A确定,那么角A的对边与邻边的比便随之确定,这个比叫做角A 的正切,记作tanA
即tanA=角A 的对边/角A的邻边
同样,在RT△ABC中,如果锐角A确定,那么角A的对边与斜边的比便随之确定,这个比叫做角A的正弦,记作sinA
即sinA=角A的对边/角A的斜边
同样,在RT△ABC中,如果锐角A确定,那么角A的邻边与斜边的比便随之确定,这个比叫做角A的余弦,记作cosA
即cosA=角A的邻边/角A的斜边
相关公式
平方和关系
sin^2α+cos^2α=1
积的关系
sinα=tanα×cosα
cosα=cotα×sinα
tanα=sinα×secα
倒数的关系
sinα ·cosα=1
商的关系
sinα/cosα=tanα=secα/cscα
和角公式
sin(α±β)=sinα·cosβ±cosα·sinβ
sin(α+β+γ)=sinα·cosβ·cosγ+cosα·sinβ·cosγ+cosα·cosβ·sinγ-sinα·sinβ·sinγ
倍角公式,半角公式
sin(2α)=2sinα·cosα=2/(tanα+cotα)
sin(3α)=3sinα-4sin³(α)=4sinα·sin(60+α)sin(60-α)
sin(α/2)=±√((1-cosα)/2)
其他
sinx=[e^(ix)-e^(-ix)]/(2i)
(由泰勒级数得出)
sin x = x-x3/3!+x5/5!-...(-1)k-1*x2k-1/(2k-1)!+... (-∞<x<∞)
(级数展开)
(sinx)'=cosx
(导数)