矩形 矩形(rectangle)是一种平面图形,矩形的四个角都是直角,同时矩形的对角线相等,而且矩形所在平面内任一点到其两对角线端点的距离的平方和相等。性质 1.矩形的四个角都是直角
2.矩形的对角线相等
3.矩形所在平面内任一点到其两对角线端点的距离的平方和相等
4.矩形既是轴对称图形,也是中心对称图形(对称轴是任何一组对边中点的连线),它有两条对称轴。
5.矩形具有平行四边形的所有性质
三角形 由不在同一直线上的三条线段首尾顺次连接所组成的封闭图形叫做三角形。 平面上三条直线或球面上三条弧线所围成的图形。 三条直线所围成的图形叫平面三角形;三条弧线所围成的图形叫球面三角形,也叫三边形。性质内角和为180°直角三角形勾股定理,只适用于直角三角形(外国叫“毕达哥拉斯定理”)
a^2+b^2=c^2, 其中a和b分别为直角三角形两直角边,c为斜边。
勾股弦数是指一组能使勾股定理关系成立的三个正整数。比如:3,4,5。他们分别是3,4和5的倍数。
常见的勾股弦数有:3,4,5;6,8,10;等等.斜角三角形 在三角形ABC中,角A,B,C的对边分别为a,b,c. 则有
(1)正弦定理
a/SinA=b/SinB= c/SinC=2r (外接圆半径为r)
(2)余弦定理。
a^2=b^2+c^2-2bc*CosA
b^2=a^2+c^2-2ac*CosB
c^2=a^2+b^2-2ab*CosC
(3)余弦定理变形公式
cosA=(b^2+C^2-a^2)/2bC
cosb=(a^2+c^2-b^2)/2aC
cosC=(a^2+b^2-C^2)/2ab
圆圆是一种几何图形。当一条线段绕着它的一个端点在平面内旋转一周时,它的另一个端点的轨迹叫做圆。根据定义,通常用圆规来画圆。性质定义
圆的定义有两个
其一:平面上到定点的距离等于定长的点的集合叫圆。
其二:平面上一条线段,绕它的一端旋转360°,留下的轨迹叫圆。