分享
 
 
 

陈类

王朝百科·作者佚名  2012-04-06
窄屏简体版  字體: |||超大  

概述数学上,特别是在代数拓扑和微分几何中,陈类(Chern class,或称陈示性类)是一类特殊的和复向量丛相关的示性类。

陈类因陈省身而得名,他在1940年代第一个给出了它们的一般定义。

陈类的性质给定一个拓扑空间X上的一个复向量丛V,V的陈类是一系列X的上同调的元素。V的第n个陈类通常记为cn(V),是整数系数的X的上同调

H 中的一个元素。类c0(V)总是等于1. 当V是复d维的丛,则类cn 在n > d时为0.

例如,若V是一个线丛,则只有在X的第二上同调群中有一个(第一)陈类。第一陈类实际上是可以从拓扑上为复线丛分类的一个完全不变量。也就是说,存在一个X上的线丛的同构等价类到H

对于1维以上的复向量丛,陈类不是一个完全不变量。

近复流形的陈类和配边(cobordism)陈类的理论导致了近复流形的配边不变量的研究。

若M是一个复流形,则其切丛是一个复向量丛。M的陈类定义为其切丛的陈类。若M是紧的2d维的,则每个陈类中的2d次单项式可以和M的基本类配对,得到一个整数,称为M的陈数。

若M′ 是另一个同维度的近复流形,则它和M配边,当且仅当M′和M陈数相同.

陈类的定义有很多处理这个定义的办法:陈最初使用了微分几何;在代数拓扑中,陈类是通过同伦理论定义的,该理论提供了把V和一个分类空间(在这个情况下是Grassmannian(格拉斯曼)空间)联系起来的映射;还有Alexander Grothendieck的一种办法,表明公理上只需定义线丛的情况就够了。陈类也自然的出现在代数几何中。

直观地说,陈类和向量丛的截面'所需要的0'的个数相关。

推广陈类理论有个一般化,其中普通的上同调由一个泛上同调群理论(generalized cohomology theory)所代替。使得这种一般化成为可能的称为复可定向的理论。陈类的形式化属性依然相同,但有一个关键的不同:计算线丛的张量积的第一陈类的规则不是各个因子的(普通)加法而是一个形式化群定律(formal group law)。

 
 
 
免责声明:本文为网络用户发布,其观点仅代表作者个人观点,与本站无关,本站仅提供信息存储服务。文中陈述内容未经本站证实,其真实性、完整性、及时性本站不作任何保证或承诺,请读者仅作参考,并请自行核实相关内容。
2023年上半年GDP全球前十五强
 百态   2023-10-24
美众议院议长启动对拜登的弹劾调查
 百态   2023-09-13
上海、济南、武汉等多地出现不明坠落物
 探索   2023-09-06
印度或要将国名改为“巴拉特”
 百态   2023-09-06
男子为女友送行,买票不登机被捕
 百态   2023-08-20
手机地震预警功能怎么开?
 干货   2023-08-06
女子4年卖2套房花700多万做美容:不但没变美脸,面部还出现变形
 百态   2023-08-04
住户一楼被水淹 还冲来8头猪
 百态   2023-07-31
女子体内爬出大量瓜子状活虫
 百态   2023-07-25
地球连续35年收到神秘规律性信号,网友:不要回答!
 探索   2023-07-21
全球镓价格本周大涨27%
 探索   2023-07-09
钱都流向了那些不缺钱的人,苦都留给了能吃苦的人
 探索   2023-07-02
倩女手游刀客魅者强控制(强混乱强眩晕强睡眠)和对应控制抗性的关系
 百态   2020-08-20
美国5月9日最新疫情:美国确诊人数突破131万
 百态   2020-05-09
荷兰政府宣布将集体辞职
 干货   2020-04-30
倩女幽魂手游师徒任务情义春秋猜成语答案逍遥观:鹏程万里
 干货   2019-11-12
倩女幽魂手游师徒任务情义春秋猜成语答案神机营:射石饮羽
 干货   2019-11-12
倩女幽魂手游师徒任务情义春秋猜成语答案昆仑山:拔刀相助
 干货   2019-11-12
倩女幽魂手游师徒任务情义春秋猜成语答案天工阁:鬼斧神工
 干货   2019-11-12
倩女幽魂手游师徒任务情义春秋猜成语答案丝路古道:单枪匹马
 干货   2019-11-12
倩女幽魂手游师徒任务情义春秋猜成语答案镇郊荒野:与虎谋皮
 干货   2019-11-12
倩女幽魂手游师徒任务情义春秋猜成语答案镇郊荒野:李代桃僵
 干货   2019-11-12
倩女幽魂手游师徒任务情义春秋猜成语答案镇郊荒野:指鹿为马
 干货   2019-11-12
倩女幽魂手游师徒任务情义春秋猜成语答案金陵:小鸟依人
 干货   2019-11-12
倩女幽魂手游师徒任务情义春秋猜成语答案金陵:千金买邻
 干货   2019-11-12
 
推荐阅读
 
 
 
>>返回首頁<<
靜靜地坐在廢墟上,四周的荒凉一望無際,忽然覺得,淒涼也很美
© 2005- 王朝網路 版權所有