小学数学教材对互质数是这样定义的:公因数只有1的两个自然数,叫做互质数。
这里所说的“两个数”是指除0外的所有自然数。
“公因数只有 1”,不能误说成“没有公因数。”
例:
(1)两个不相同质数一定是互质数。
例如,2与7、13与19。
(2)一个质数如果不能整除另一个合数,这两个数为互质数。
例如,3与10、5与 26。
(3)1不是质数也不是合数。
(4)相邻的两个自然数是互质数。例如 15与 16。
(5)相邻的两个奇数是互质数。例如 49与 51。
(6)大数是质数的两个数是互质数。例如97与88。
(7)小数是质数,大数不是小数的倍数的两个数是互质数。例如 7和 16。
(8)2和任何奇数是互质数。如2和87。
(9)两个数都是合数(二数差又较大),小数所有的质因数,都不是大数的约数,这两个数是互质数。
如357与715,357=3×7×17,而3、7和17都不是715的约数,这两个数为互质数。
(10)两个数都是合数(二数差较小),这两个数的差的所有质因数都不是小数的约数,这两个数是互质数。如85和78。
85-78=7,7不是78的约数,这两个数是互质数。
(11)两个数都是合数,大数除以小数的余数(不为“0”且大于“ 1”)的所有质因数,都不是小数的约数,这两个数是互质数。如 462与 221
462÷221=2……20,
20=2×2×5。
2、5都不是221的约数,这两个数是互质数。
(12)减除法。如255与182。
255-182=73,观察知 73<182。
182-(73×2)=36,显然 36<73。
73-(36×2)=1,
(255,182)=1。
所以这两个数是互质数。
三个或三个以上自然数互质有两种不同的情况:一种是这些成互质数的自然数是两两互质的。如2、3、5。另一种不是两两互质的。如6、8、9。 两个正整数,除了1以外,没有其他公约数时,称这两个数为互质数.
互质数的概率是6/π^2