最小公倍数(Least Common Multiple,缩写L.C.M.),对于两个正整数数来说,指该两数共有倍数中最小的一个。计算最小公倍数时,通常会借助最大公约数来辅助计算。
例如,十天干和十二地支混合称呼一阴历年,干支循环回归同一名称的所需时间,就是 12 和 10 的最小公倍数,即是 60 ──一个“甲子”。
对分数进行加减运算时,要求两数的分母相同才能计算,故需要通分;假如令两个分数的分母通分成最小公倍数,计算量便最低。
方法1:短除法
步骤:
一、找出两数的最小公约数,列短除式,用最小约倍数去除这两个数,得二商;
二、找出二商的最小公约数,用最小公约数去除二商,得新一级二商;
三、以此类推,直到二商为互质数;
四、将所有的公约数及最后的二商相乘,所得积就是原二数的最小公倍数。
例:求48和42的最小公倍数
解: 48与42的最小公约数为2
48/2=24;42/2=21;24与21的最大公约数为3
24/3=8;21/3=7;8和7互为质数
2*3*8*7=336
方法2:质因数分解
举例:12和27的最小公倍数
12=2*2×3
27=3*3*3
必须用里面数字中的最大次方者,像本题有3和3的立方,所以必须使用3的立方(也就是3*3*3),不能使用3
所以:
2*2×3*3*3=4×27=108
两数的最小公倍数是108
方法3:借助最大公约数求最小公倍数
步骤:
一、利用辗除法或其它方法求得最大公约数;
二、 最小公倍数等于两数之积除以最大公约数。
举例:12和8的最大公约数为4
12*8/4=24
两数的最小公倍数是24
注:公约数又称公因数。