梅氏定理

王朝百科·作者佚名  2009-12-20
窄屏简体版  字體: |||超大  

梅涅劳斯定理

梅涅劳斯(Menelaus)定理是由古希腊数学家梅涅劳斯首先证明的。他指出:如果一条直线与△ABC的三边AB、BC、CA或其延长线交于F、D、E点,那么AF/FB×BD/DC×CE/EA=1。

证明:

过点A作AG‖BC交DF的延长线于G

AF/FB=AG/BD , BD/DC=BD/DC , CE/EA=DC/AG

三式相乘得:

AF/FB×BD/DC×CE/EA=AG/BD×BD/DC×DC/AG=1

它的逆定理也成立:若有三点F、D、E分别在的边AB、BC、CA或其延长线上,且满足AF/FB×BD/DC×CE/EA=1,则F、D、E三点共线。利用这个逆定理,可以判断三点共线。

 
 
 
免责声明:本文为网络用户发布,其观点仅代表作者个人观点,与本站无关,本站仅提供信息存储服务。文中陈述内容未经本站证实,其真实性、完整性、及时性本站不作任何保证或承诺,请读者仅作参考,并请自行核实相关内容。
 
 
© 2005- 王朝網路 版權所有 導航