赛瓦定理:
设A',B',C'分别是△ABC的三边BC,CA,AB或其延长线上的点,若AA',BB',CC'三线平行或共点,则(BA'/A'C)(CB'/B'A)(AC'/C'B)=1.
塞瓦定理的逆定理:设A',B',C'分别是△ABC的三边BC,CA,AB或其延长线上的点,若(BA'/A'C)(CB'/B'A)(AC'/C'B)=1 则AA',BB',CC'三直线共点或三直线互相平行。
赛瓦(G·CEVA,1648---1734)定理及其逆定理可用来证明有关三直线共点的问题。
笑话军事旅游美容女性百态母婴家电游戏互联网财经美女干货家饰健康探索资源娱乐学院 数码美食景区养生手机购车首饰美妆装修情感篇厨房科普动物植物编程百科知道汽车珠宝 健康评测品位娱乐居家情感星座服饰美体奢侈品美容达人亲子图库折扣生活美食花嫁风景 | 首页 |
赛瓦定理:
设A',B',C'分别是△ABC的三边BC,CA,AB或其延长线上的点,若AA',BB',CC'三线平行或共点,则(BA'/A'C)(CB'/B'A)(AC'/C'B)=1.
塞瓦定理的逆定理:设A',B',C'分别是△ABC的三边BC,CA,AB或其延长线上的点,若(BA'/A'C)(CB'/B'A)(AC'/C'B)=1 则AA',BB',CC'三直线共点或三直线互相平行。
赛瓦(G·CEVA,1648---1734)定理及其逆定理可用来证明有关三直线共点的问题。