Cauchy中值定理
设函数f(x),g(x)满足是在[a,b]连续,(a、b)可导,g(x)≠0(x∈(a,b))
则至少存在一点,ξ∈(a,b),使f'(ξ)/g'(ξ)=[f(a)-f(b)]/[g(a)-g(b)]
几何意义:
若令u=f(x),v=g(x),这个形式可理解为参数方程,而[f(a)-f(b)]/[g(a)-g(b)]则是连接参数曲线的端点斜率,f'(ξ)/g'(ξ)表示曲线上某点处的切线斜率,在定理的条件下,可理解如下:用参数方程表示的曲线上至少有一点,它的切线平行于两端点所在的弦,这一点Lagrange也具有,但是Cauchy中值定理除了适用y=f(x)表示的曲线,还适用于参数方程表示的曲线。
柯西中值定理的证明过程:
证明:令F(x)=f(x)-[f(a)-f(b)]g(x)/[g(a)-g(b)]
∵F(a)=F(b)=[f(a)g(b)-f(b)g(a)]/[g(b)-g(a)]
由罗尔定理知:存在ξ∈(a,b),使得F'(ξ)=0.
又知F'(x)=f'(x)-[f(a)-f(b)]g'(x)/[g(a)-g(b)]
故f'(ξ)-[f(a)-f(b)]g'(ξ)/[g(a)-g(b)]=0
即f'(ξ)/g'(ξ)=[f(a)-f(b)]/[g(a)-g(b)]
得证。