叉乘

王朝百科·作者佚名  2009-12-26
窄屏简体版  字體: |||超大  

电磁学中,已知电流方向和磁感线方向,求受力方向,就要用到叉乘。

叉乘,也叫向量的外积、向量积。顾名思义,求下来的结果是一个向量,记这个向量为c。

|向量c|=|向量a×向量b|=|a||b|sin<a,b>

向量c的方向与a,b所在的平面垂直,且方向要用“右手法则”判断(用右手的四指先表示向量a的方向,然后手指朝着手心的方向摆动到向量b的方向,大拇指所指的方向就是向量c的方向)。

因此

向量的外积不遵守乘法交换率,因为

向量a×向量b=-向量b×向量a

在物理学中,已知力与力臂求力矩,就是向量的外积,即叉乘。

将向量用坐标表示(三维向量),

若向量a=(a1,b1,c1),向量b=(a2,b2,c2),

向量a·向量b=a1a2+b1b2+c1c2

向量a×向量b=

| i j k|

|a1 b1 c1|

|a2 b2 c2|

=(b1c2-b2c1,c1a2-a1c2,a1b2-a2b1)

(i、j、k分别为空间中相互垂直的三条坐标轴的单位向量)。

 
 
 
免责声明:本文为网络用户发布,其观点仅代表作者个人观点,与本站无关,本站仅提供信息存储服务。文中陈述内容未经本站证实,其真实性、完整性、及时性本站不作任何保证或承诺,请读者仅作参考,并请自行核实相关内容。
 
 
© 2005- 王朝網路 版權所有 導航