
防雷器也称:避雷器,spd,浪涌保护器。
SPD信息时代的今天,电脑网络和通讯设备越来越精密,其工作环境的要求也越来越高,而雷电以及大型电气设备的瞬间过电压会越来越频繁的通过电源、天线、无线电信号收发设备等线路侵入室内电气设备和网络设备,造成设备或元器件损坏,人员伤亡,传输或储存的数据受到干扰或丢失,甚至使电子设备产生误动作或暂时瘫痪、系统停顿,数据传输中断,局域网乃至广域网遭到破坏。其危害触目惊心,间接损失一般远远大于直接经济损失。防雷器就是通过现代电学以及其它技术来防止被雷击中的设备。
防雷器的作用及特点防雷器的作用是用来保护电力系统中各种电器设备免受雷电过电压、操作过电压、工频暂态过电压冲击而损坏的一种电器。防雷器的类型主要有保护间隙、阀型防雷器和氧化锌防雷器。保护间隙主要用于限制大气过电压,一般用于配电系统、线路和变电所进线段保护。阀型防雷器与氧化锌防雷器用于变电所和发电厂的保护,在500KV及以下系统主要用于限制大气过电压,在超高压系统中还将用来限制内过电压或作内过电压的后备保护。
防雷器的主要参数1、标称电压Un:被保护系统的额定电压相符,在信息技术系统中此参数表明了应该选用的保护器的类型,它标出交流或直流电压的有效值。
2、额定电压Uc:能长久施加在保护器的指定端,而不引起保护器特性变化和激活保护元件的最大电压有效值。
3、额定放电电流Isn:给保护器施加波形为8/20μs的标准雷电波冲击10次时,保护器所耐受的最大冲击电流峰值。
4、最大放电电流Imax:给保护器施加波形为8/20μs的标准雷电波冲击1次时,保护器所耐受的最大冲击电流峰值。
5、电压保护级别Up:保护器在下列测试中的最大值:1KV/μs斜率的跳火电压;额定放电电流的残压。
6、响应时间tA:主要反应在保护器里的特殊保护元件的动作灵敏度、击穿时间,在一定时间内变化取决于du/dt或di/dt的斜率。
7、数据传输速率Vs:表示在一秒内传输多少比特值,单位:bps;是数据传输系统中正确选用防雷器的参考值,防雷保护器的数据传输速率取决于系统的传输方式。
8、插入损耗Ae:在给定频率下保护器插入前和插入后的电压比率。
9、回波损耗Ar:表示前沿波在保护设备(反射点)被反射的比例,是直接衡量保护设备同系统阻抗是否兼容的参数。
10、最大纵向放电电流:指每线对地施加波形为8/20μs的标准雷电波冲击1次时,保护器所耐受的最大冲击电流峰值。
11、最大横向放电电流:指线与线之间施加波形为8/20μs的标准雷电波冲击1次时,保护器所耐受的最大冲击电流峰值。
12、在线阻抗:指在标称电压Un下流经保护器的回路阻抗和感抗的和。通常称为“系统阻抗”。
13、峰值放电电流:分两种:额定放电电流Isn和最大放电电流Imax。
14、漏电流:指在75或80标称电压Un下流经保护器的直流电流。
防雷相关标准防雷器的常见执行标准(各国要求不一样):IEC61643-1 、GB18802.1-2002、UL1283Filter 、UL1449.2nd.Edition
我国现在防雷系统现在实施的是中华人民共和国建设部2004年3月1日制定的:GB50343—2004《建筑物电子信息系统防雷技术规范》和中华人民共和国建设部2000年10月1号制定的:GB50057—94《建筑物设计防雷规范》。
知名防雷品牌目前市面上比较常见的防雷器有:中国的雷光、中国的万佳(WOKA)、德国的DEHN、德国的OBO;
由中国科学院研究员、国际宇航科学院庄院士在国际上首次提出了通过消除雷击危险性,使保护目标不再遭受雷击的新一代避雷技术,称为“智能避雷技术” 。依托原中国科学院空间中心电学组专家团队,经过十多年的潜心研究开发,从理论分析、模拟计算、实验测试、模型实验、工程实用化研究、外场实验等各个角度和方法的研究,都证明了这一技术的合理性和可行性。期间经多次大小各类专家会议的评审鉴定,得到充分肯定,被誉为“21世纪防雷事业的曙光” 。
防雷器(SPD)的选用1、 防雷器中使用的元器件
电源避雷器中的雷电能量吸收,主要是氧化锌压敏电阻和气体放电管。
氧化锌压敏电阻是限压型保护器件,没有脉冲电压时呈现高阻状态,一旦响应脉冲电压,立即将电压限制到一定值,其阻抗突变为低阻状态。与气体放电管比较,它最大的优点是当它吸收脉冲电压时因残压高于工作电压,不会造成电源的瞬间短路,也不会产生续流。氧化锌压敏电阻的响应时间比气体放电管快。气体放电管的击穿电压对脉冲电压的上升速率十分敏感,电压上升速率越快,点火电压越高,响应时间越快。能够正确选择压敏电阻和气体放电管这二类元器件,并利用它们各自的优点进行组合的电源避雷器,其整机性能相对较好。电源避雷器中要求氧化锌压敏电阻,具有优良的能量耐受特性,而能量耐受特性主要用额定雷电冲击电流、最大雷电冲击电流和能量耐量三大指标来描述,这些特性与氧化锌压敏电阻的表面积有关,和元件的散热条件有关。同一种规格的压敏电阻,由于不同厂家的制造工艺、原料配方不同,其能量耐受能力会相差很大。
气体放电管具有很强的承受大能量冲击的能力,但在具体使用时,由于气体放电管在放电时残压极低,近似于短路状态,因此不能单独在电源避雷器中使用,气体放电管的耐流能力与管径有关,管径越大,耐流能力越好。气体放电管的质量问题主要表现为慢性漏气,长时间使用的可靠性问题(即遭受多次雷电冲击后,直流击穿电压值发生偏移),光敏效应和离散性较大。虽然近年来国产的气体放电管有了较大的改进,质量在逐步提高,但整体质量问题仍然存在,特别是可靠性问题和慢性漏气问题。因此电源避雷器中选择进口名牌气体放电管的产品应作为首选,且气体放电管的管径在Ф8㎜以上为好。
电源避雷器中的电容器和热熔保险丝的选择也很重要。电源避雷器长期工作在电网中,由于电容器的质量问题造成电源避雷器整机损坏的事例很多,因此,电容器的耐压选择很重要,特别是耐受脉冲高电压的冲击能力。相比之下,国外产品好于国内产品,日立公司,OKAYA公司的电容器质量为上好。电源避雷器中的热熔保险丝的作用是当雷电流超过电源避雷器最大承受能力时,由于过流作用,可使保险丝断开,同时由于过截使氧化锌压敏电阻温度上升亦可使保险丝断开,起到过流和温度双重保护作用。由于电源避雷器常态工作条件下,电流非常小,只是在雷电冲击或脉冲电压冲击时,在瞬态条件下起保护作用,因此与常规热熔保险丝的使用条件有所区别,所以,电源避雷器中的热熔保险丝应有独特性能,即在瞬态条件下的熔断特性。
2、 先进的设计方案
避雷器的设计方案有了良好的元器件,先进的设计方案是确保电源避雷器质量的必要条件。根据对国内外产品的分析比较,在设计电源避雷器时应充分考虑以下几个方面问题。电源避雷器耐雷电电流冲击等级的合理定位,即电源避雷器额定浪涌电流值和最大浪涌电流值的确定。现在市场上有些电源避雷器的厂商,为了广告宣传和产品竞争等商业行为,随意提高耐雷电电流冲击的等级,这是一种对用户极不负责的态度。雷击灾害对现代电子设备具有极大的破坏性。某一地区雷电电流的大小,由于地理环境、气象条件和电子设备电源接线方式等诸多不确定因素,很难用一个数字量来确定,因此,厂家对电源避雷器的设计应有较大的余量。一般浪涌电流的设计应是该电源避雷器最大浪涌电流值的一倍,而最大浪涌电流值又应是该电源避雷器额定浪涌电流值的一倍,这样的设计余量才是对用户负责的态度。在厂家设计的具体线路中,应采用多路浪涌电流吸收的冗余式电路结构,即当某一路浪涌电流吸收回路由于某元器件损坏,自动退出电源避雷器的整机电路,不影响整个电源避雷器的正常工作。由于采用上述的设计余量,即使出现一路、甚至二路吸收回路退出整体电路,也不影响整个电源避雷器的防雷能力。这种冗余设计方案将大大地提高电源避雷器的可靠性,是多雷区电源线路防雷的首选防护设备。
3、 生产工艺和质量管理体系方面
合理科学的生产工艺是确保电源避雷器质量的保证条件。在电源避雷器的生产工艺上,生产厂家应注意以下几个方面的问题。湿热一直是压敏电阻失效的一个重要原因,其表现出来的现象是压敏电阻在受长期潮湿环境的影响下,其泄露电流明显上升,压敏电压值明显下降。对于整个电源避雷器来讲,由于潮湿环境的影响,一旦电网中出现瞬态过电压或雷电电流的冲击,很可能造成局部短路而损坏的现象。由于雷雨季
节往往是一个湿热的气象环境条件,因此电源避雷器的防湿热工艺显得非常重要。通常厂家采用环氧树脂灌封的生产工艺。有些厂家能在环氧树脂灌封的过程中进行真空抽气,则效果更好。因此,在选择电源避雷器时,除观看厂家的元器件的选择,设计方案和生产工艺外,质量管理方面也很重要。这包括元器件采购、保管、检验、组装、老化、残压和泄露电流的测试制度、安全制度等方面。
综上,选择质量优良的电源避雷器,不能只停留在厂家的广告宣传上,还应到厂家针对上述几个方面去看一看,特别是关键元器件的选择、设计方案、生产工艺是了解的重点。除此之外,当地的气象条件、年雷暴日数和雷暴造成财产损失的情况也应和选择电源避雷器的防护级别进行综合考虑。