
定理三角形的中位线平行于第三边,并且等于它的一半 。
三角形两边中点的连线(中位线)平行于第三边,且等于第三边的一半。
证明如图,已知△ABC中,D,E分别是AB,AC两边中点。
求证DE平行且等于BC/2
法一:
过C作AB的平行线交DE的延长线于F点。
∵CF∥AD
∴∠A=∠ACF
∵AE=CE、∠AED=∠CEF
∴△ADE≌△CFE
∴DE=EF=DF/2、AD=CF
∵AD=BD
∴BD=CF
∴BCFD是平行四边形
∴DF∥BC且DF=BC
∴DE=BC/2
∴三角形的中位线定理成立.
法二:利用相似证
∵D,E分别是AB,AC两边中点
∴AD=AB/2 AE=AC/2
∴AD/AE=AB/AC
又∵∠A=∠A
∴△ADE∽△ABC
∴DE/BC=AD/AB=1/2
∴∠ADE=∠ABC
∴DF∥BC且DE=BC/2
三角形中位线定理的逆定理逆定理一:
如图DE//BC,DE=BC/2,则D是AB的中点,E是AC的中点。
逆定理二:
如图D是AB的中点,DE//BC,则E是AC的中点,DE=BC/2
【证法①】
取AC中点G ,联结DG
则DG是三角形ABC的中位线
∴DG∥BC
又∵DE∥BC
∴DF和DE重合(过直线外一点,有且只有一条直线与已知直线重合)
