分享
 
 
 

神经网络

王朝百科·作者佚名  2009-10-24
窄屏简体版  字體: |||超大  

神经网络概述神经网络是:

思维学普遍认为,人类大脑的思维分为抽象(逻辑)思维、形象(直观)思维和灵感(顿悟)思维三种基本方式。

逻辑性的思维是指根据逻辑规则进行推理的过程;它先将信息化成概念,并用符号表示,然后,根据符号运算按串行模式进行逻辑推理;这一过程可以写成串行的指令,让计算机执行。然而,直观性的思维是将分布式存储的信息综合起来,结果是忽然间产生想法或解决问题的办法。这种思维方式的根本之点在于以下两点:1.信息是通过神经元上的兴奋模式分布储在网络上;2.信息处理是通过神经元之间同时相互作用的动态过程来完成的。

人工神经网络就是模拟人思维的第二种方式。这是一个非线性动力学系统,其特色在于信息的分布式存储和并行协同处理。虽然单个神经元的结构极其简单,功能有限,但大量神经元构成的网络系统所能实现的行为却是极其丰富多彩的。

神经网络的研究内容相当广泛,反映了多学科交叉技术领域的特点。目前,主要的研究工作集中在以下几个方面:

(1)生物原型研究。从生理学、心理学、解剖学、脑科学、病理学等生物科学方面研究神经细胞、神经网络、神经系统的生物原型结构及其功能机理。

(2)建立理论模型。根据生物原型的研究,建立神经元、神经网络的理论模型。其中包括概念模型、知识模型、物理化学模型、数学模型等。

(3)网络模型与算法研究。在理论模型研究的基础上构作具体的神经网络模型,以实现计算机馍拟或准备制作硬件,包括网络学习算法的研究。这方面的工作也称为技术模型研究。

(4)人工神经网络应用系统。在网络模型与算法研究的基础上,利用人工神经网络组成实际的应用系统,例如,完成某种信号处理或模式识别的功能、构作专家系统、制成机器人等等。

纵观当代新兴科学技术的发展历史,人类在征服宇宙空间、基本粒子,生命起源等科学技术领域的进程中历经了崎岖不平的道路。我们也会看到,探索人脑功能和神经网络的研究将伴随着重重困难的克服而日新月异。

【人工神经网络的工作原理】

人工神经网络首先要以一定的学习准则进行学习,然后才能工作。现以人工神经网络对手写“A”、“B”两个字母的识别为例进行说明,规定当“A”输入网络时,应该输出“1”,而当输入为“B”时,输出为“0”。

所以网络学习的准则应该是:如果网络作出错误的的判决,则通过网络的学习,应使得网络减少下次犯同样错误的可能性。首先,给网络的各连接权值赋予(0,1)区间内的随机值,将“A”所对应的图象模式输入给网络,网络将输入模式加权求和、与门限比较、再进行非线性运算,得到网络的输出。在此情况下,网络输出为“1”和“0”的概率各为50%,也就是说是完全随机的。这时如果输出为“1”(结果正确),则使连接权值增大,以便使网络再次遇到“A”模式输入时,仍然能作出正确的判断。

如果输出为“0”(即结果错误),则把网络连接权值朝着减小综合输入加权值的方向调整,其目的在于使网络下次再遇到“A”模式输入时,减小犯同样错误的可能性。如此操作调整,当给网络轮番输入若干个手写字母“A”、“B”后,经过网络按以上学习方法进行若干次学习后,网络判断的正确率将大大提高。这说明网络对这两个模式的学习已经获得了成功,它已将这两个模式分布地记忆在网络的各个连接权值上。当网络再次遇到其中任何一个模式时,能够作出迅速、准确的判断和识别。一般说来,网络中所含的神经元个数越多,则它能记忆、识别的模式也就越多。

“人脑是如何工作的?”

“人类能否制作模拟人脑的人工神经元?”

多少年以来,人们从医学、生物学、生理学、哲学、信息学、计算机科学、认知学、组织协同学等各个角度企图认识并解答上述问题。在寻找上述问题答案的研究过程中,近年来逐渐形成了一个新兴的多学科交叉技术领域,称之为“神经网络”。神经网络的研究涉及众多学科领域,这些领域互相结合、相互渗透并相互推动。不同领域的科学家又从各自学科的兴趣与特色出发,提出不同的问题,从不同的角度进行研究。

心理学家和认知科学家研究神经网络的目的在于探索人脑加工、储存和搜索信息的机制,弄清人脑功能的机理,建立人类认知过程的微结构理论。

生物学、医学、脑科学专家试图通过神经网络的研究推动脑科学向定量、精确和理论化体系发展,同时也寄希望于临床医学的新突破;信息处理和计算机科学家研究这一问题的目的在于寻求新的途径以解决目前不能解决或解决起来有极大困难的大量问题,构造更加逼近人脑功能的新一代计算机。

人工神经网络是由大量的简单基本元件——神经元相互联接而成的自适应非线性动态系统。每个神经元的结构和功能比较简单,但大量神经元组合产生的系统行为却非常复杂。

人工神经网络反映了人脑功能的若干基本特性,但并非生物系统的逼真描述,只是某种模仿、简化和抽象。

与数字计算机比较,人工神经网络在构成原理和功能特点等方面更加接近人脑,它不是按给定的程序一步一步地执行运算,而是能够自身适应环境、总结规律、完成某种运算、识别或过程控制。

人工神经元的研究起源于脑神经元学说。19世纪末,在生物、生理学领域,Waldeger等人创建了神经元学说。人们认识到复杂的神经系统是由数目繁多的神经元组合而成。大脑皮层包括有100亿个以上的神经元,每立方毫米约有数万个,它们互相联结形成神经网络,通过感觉器官和神经接受来自身体内外的各种信息,传递至中枢神经系统内,经过对信息的分析和综合,再通过运动神经发出控制信息,以此来实现机体与内外环境的联系,协调全身的各种机能活动。

神经元也和其他类型的细胞一样,包括有细胞膜、细胞质和细胞核。但是神经细胞的形态比较特殊,具有许多突起,因此又分为细胞体、轴突和树突三部分。细胞体内有细胞核,突起的作用是传递信息。树突是作为引入输入信号的突起,而轴突是作为输出端的突起,它只有一个。

树突是细胞体的延伸部分,它由细胞体发出后逐渐变细,全长各部位都可与其他神经元的轴突末梢相互联系,形成所谓“突触”。在突触处两神经元并未连通,它只是发生信息传递功能的结合部,联系界面之间间隙约为(15~50)×10米。突触可分为兴奋性与抑制性两种类型,它相应于神经元之间耦合的极性。每个神经元的突触数目正常,最高可达10个。各神经元之间的连接强度和极性有所不同,并且都可调整、基于这一特性,人脑具有存储信息的功能。利用大量神经元相互联接组成人工神经网络可显示出人的大脑的某些特征。下面通过人工神经网络与通用的计算机工作特点来对比一下:

若从速度的角度出发,人脑神经元之间传递信息的速度要远低于计算机,前者为毫秒量级,而后者的频率往往可达几百兆赫。但是,由于人脑是一个大规模并行与串行组合处理系统,因而,在许多问题上可以作出快速判断、决策和处理,其速度则远高于串行结构的普通计算机。人工神经网络的基本结构模仿人脑,具有并行处理特征,可以大大提高工作速度。

人脑存贮信息的特点为利用突触效能的变化来调整存贮内容,也即信息存贮在神经元之间连接强度的分布上,存贮区与计算机区合为一体。虽然人脑每日有大量神经细胞死亡 (平均每小时约一千个),但不影响大脑的正常思维活动。

普通计算机是具有相互独立的存贮器和运算器,知识存贮与数据运算互不相关,只有通过人编出的程序使之沟通,这种沟通不能超越程序编制者的预想。元器件的局部损坏及程序中的微小错误都可能引起严重的失常。

人类大脑有很强的自适应与自组织特性,后天的学习与训练可以开发许多各具特色的活动功能。如盲人的听觉和触觉非常灵敏;聋哑人善于运用手势;训练有素的运动员可以表现出非凡的运动技巧等等。

普通计算机的功能取决于程序中给出的知识和能力。显然,对于智能活动要通过总结编制程序将十分困难。

人工神经网络也具有初步的自适应与自组织能力。在学习或训练过程中改变突触权重值,以适应周围环境的要求。同一网络因学习方式及内容不同可具有不同的功能。人工神经网络是一个具有学习能力的系统,可以发展知识,以致超过设计者原有的知识水平。通常,它的学习训练方式可分为两种,一种是有监督或称有导师的学习,这时利用给定的样本标准进行分类或模仿;另一种是无监督学习或称无为导师学习,这时,只规定学习方式或某些规则,则具体的学习内容随系统所处环境 (即输入信号情况)而异,系统可以自动发现环境特征和规律性,具有更近似人脑的功能。

人工神经网络早期的研究工作应追溯至20世纪40年代。下面以时间顺序,以著名的人物或某一方面突出的研究成果为线索,简要介绍人工神经网络的发展历史。

1943年,心理学家W·Mcculloch和数理逻辑学家W·Pitts在分析、总结神经元基本特性的基础上首先提出神经元的数学模型。此模型沿用至今,并且直接影响着这一领域研究的进展。因而,他们两人可称为人工神经网络研究的先驱。

1945年冯·诺依曼领导的设计小组试制成功存储程序式电子计算机,标志着电子计算机时代的开始。1948年,他在研究工作中比较了人脑结构与存储程序式计算机的根本区别,提出了以简单神经元构成的再生自动机网络结构。但是,由于指令存储式计算机技术的发展非常迅速,迫使他放弃了神经网络研究的新途径,继续投身于指令存储式计算机技术的研究,并在此领域作出了巨大贡献。虽然,冯·诺依曼的名字是与普通计算机联系在一起的,但他也是人工神经网络研究的先驱之一。

50年代末,F·Rosenblatt设计制作了“感知机”,它是一种多层的神经网络。这项工作首次把人工神经网络的研究从理论探讨付诸工程实践。当时,世界上许多实验室仿效制作感知机,分别应用于文字识别、声音识别、声纳信号识别以及学习记忆问题的研究。然而,这次人工神经网络的研究高潮未能持续很久,许多人陆续放弃了这方面的研究工作,这是因为当时数字计算机的发展处于全盛时期,许多人误以为数字计算机可以解决人工智能、模式识别、专家系统等方面的一切问题,使感知机的工作得不到重视;其次,当时的电子技术工艺水平比较落后,主要的元件是电子管或晶体管,利用它们制作的神经网络体积庞大,价格昂贵,要制作在规模上与真实的神经网络相似是完全不可能的;另外,在1968年一本名为《感知机》的著作中指出线性感知机功能是有限的,它不能解决如异感这样的基本问题,而且多层网络还不能找到有效的计算方法,这些论点促使大批研究人员对于人工神经网络的前景失去信心。60年代末期,人工神经网络的研究进入了低潮。

另外,在60年代初期,Widrow提出了自适应线性元件网络,这是一种连续取值的线性加权求和阈值网络。后来,在此基础上发展了非线性多层自适应网络。当时,这些工作虽未标出神经网络的名称,而实际上就是一种人工神经网络模型。

随着人们对感知机兴趣的衰退,神经网络的研究沉寂了相当长的时间。80年代初期,模拟与数字混合的超大规模集成电路制作技术提高到新的水平,完全付诸实用化,此外,数字计算机的发展在若干应用领域遇到困难。这一背景预示,向人工神经网络寻求出路的时机已经成熟。美国的物理学家Hopfield于1982年和1984年在美国科学院院刊上发表了两篇关于人工神经网络研究的论文,引起了巨大的反响。人们重新认识到神经网络的威力以及付诸应用的现实性。随即,一大批学者和研究人员围绕着 Hopfield提出的方法展开了进一步的工作,形成了80年代中期以来人工神经网络的研究热潮。

图书.神经网络作者: 候媛彬,杜京义,汪梅编著

出 版 社: 西安电子科技大学出版社

出版时间: 2007-8-1

字数: 339000

版次: 1

页数: 223

I S B N : 9787560619026

分类: 图书 >> 计算机/网络 >> 人工智能

定价:¥26.00

内容简介

神经网络是智能控制技术的主要分支之一。本书的主要内容有:神经网络的概念,神经网络的分类与学习方法,前向神经网络模型及其算法,改进的BP网络及其控制、辨识建模,基于遗传算法的神经网络,基于模糊理论的神经网络,RBF网络及其在混沌背景下对微弱信号的测量与控制,反馈网络,Hopfield网络及其在字符识别中的应用,支持向量机及其故障诊断,小波神经网络及其在控制与辨识中的应用。

本书内容全面,重点突出,以讲明基本概念和方法为主,尽量减少繁琐的数学推导,并给出一些结合工程应用的例题。本书附有光盘,其中包括结合各章节内容所开发的30多个源程序,可直接在MATLAB界面下运行,此外,还包括用Authorware和Flash软件制作的动画课件。

本书既可作为自动化和电气自动化专业及相关专业的研究生教材,也可供机电类工程技术人员选用,还可作为有兴趣的读者自学与应用的参考书。

作者简介

侯媛彬[1],教授,女,博士生导师,1997年获西安交通大学系统工程(Ⅰ)博士学位。西安科技大学矿山机电博士点学科带头人,西安科技大学省重点学科“控制理论与控制工程”学科带头人,中国自动化学会电气专业委员会委员,陕西省自动化协会常务理事兼教育委员会主任。一直从事自动化、安全技术与工程方面的教学和研究工作。讲授过博士、硕士和本科各层面的专业课程10多门。在国内外公开发表学术论文110余篇,其中被EI和ISTP检索30余篇。出版专著、教材8部:承担省部级科研项目及横向项目10余项;获实用新型专利2项;获省级科技进步奖3项:获科研、教学方面的各种奖10多项;2006年获省级师德标兵。

目录

前言

第1章 智能控制技术基础

1.1 智能控制的基本概念

1.2 智能控制系统的分类和发展

1.3 用于神经网络控制或辨识建模的噪声信号产生方法

1.4 伪随机信号产生及MATLAB仿真举例

1.5 语义网络知识表示法及Petri网举例

1.6 小结

习题

第2章 神经网络控制的基本概念

2.1 生物神经元模型

2.2 人工神经元

2.2.1 人工神经网络的发展

2.2.2 神经网络的特性

2.2.3 人工神经元模型

2.3 神经网络常用的激发函数

2.4 神经网络的分类

2.5 神经网络学习方法

2.6 小结

习题

第3章 前向神经网络模型及其仿真算法

3.1 感知器算法及其应用

3.1.1 感知器的概念

3.1.2 感知器的局限性

3.1.3 感知器的线性可分性

3.1.4 感知器分类的MATLAB仿真

3.2 BP神经网络及其算例

3.3 其它前向网络

3.4 神经网络模型辨识

3.4.1 神经网络模型辨识系统结构

3.4.2 神经网络模型辨识MATLAB仿真

3.5 神经网络自适应控制系统结构

3.6 神经元自适应控制系统MATLAB仿真

3.6.1 Kp变化时系统的阶跃响应仿真

3.6.2 系统的闭环零点z、极点p和增益k求取仿真

3.6.3 单神经网络控制系统仿真

3.7 小结

习题

第4章 改进的BP网络训练算法

4.1 BP网络分析及其改进思路

4.1.1 网络存在问题分析

4.1.2 其它网络训练技巧

4.2 基于降低网络灵敏度的网络改进算法

4.3 提高神经网络容错性的理论和方法

4.4 提高神经网络收敛速度的一种赋初值算法

4.5 复杂系统神经网络辨识MATLAB仿真举例

4.5.1 具有噪声二阶系统辨识的MATLAB程序剖析

4.5.2 多维非线性辨识与MATLAB程序剖析

4.6 小结

习题

第5章 小脑模型神经网络及其应用

5.1 CMAC网络的特点

5.2 改进的CMAC干式变压器卷线机跑偏信号谐波分析

5.2.1 CMAC网络对非线性函数学习过程

5.2.2 干式变压器卷线机跑偏信号谐波分析方法

5.2.3 跑偏信号谐波仿真与分析

5.3 改进的CMAC学习多维函数

5.4 小结

习题

第6章 遗传算法及其神经网络

6.1 遗传算法的概念

6.1.1 遗传算法的定义及特点

6.1.2 遗传操作

6.2 一种适应度函数的改进算法

6.2.1 适应度函数的选择与计算

6.2.2 一种改进的遗传神经解耦方法

6.2.3 遗传神经解耦仿真、实验及结论

6.3 遗传算法及其遗传神经网络应用仿真

6.3.1 遗传算法寻优MATLAB仿真

6.3.2 遗传神经元辨识MATLAB仿真

6.4 小结

习题

第7章 模糊神经网络

7.1 传统控制与模糊控制

7.2 模糊神经网络及其应用

7.2.1 模糊神经网络的概念

7.2.2 隶属函数神经网络

7.2.3 模糊神经网络控制模型

7.3 FNN对非线性多变量系统的解耦方法

7.3.1 FNN解耦的基本模型

7.3.2 FNN解耦的算法

7.4 FC及FNN解耦算法的MATLAB仿真

7.5 小结

习题

第8章 径向基函数网络

8.1 径向基函数网络模型

8.2 网络的训练与设计

8.2.1 聚类分析

8.2.2 动态聚类法

8.2.3 RBF网络的学习算法

8.3 径向基神经网络的工具箱

8.3.1 面向MATLAB工具箱的径向基神经元模型

8.3.2 面向MATLAB工具箱的径向基神经网络

8.3.3 径向基网络的创建与学习过程

8.3.4 径向基网络的应用

8.4 混沌时间序列建模及预测

8.4.1 相空间重构

8.4.2 非线性函数逼近方法

8.4.3 数值实验

8.5 小结

习题

第9章 反馈型神经网络

9.1 Hopfield神经网络

9.1.1 Hopfield网络的结构

9.1.2 Hopfield网络的稳定性

9.1.3 基本学习规则

9.1.4 Hopfield网络的联想特性

9.2 反馈网络与优化计算

9.2.1 Hopfield网络的电路模型与动态方程

9.2.2 Hopfield网络的能量函数与稳定性

9.2.3 Hopfield网络的优化计算

9.3 Hopfield网络的MATLAB开发

9.3.1 Hopfield神经网络的工具函数

9.3.2 基于Hopfield网络的数字识别

9.4 小结

习题

第10章 支持向量机

10.1 统计学习理论的一般概念

10.1.1 机器学习问题的表示

10.1.2 经验风险最小化

10.1.3 学习机的VC维与风险界

10.1.4 结构风险最小化

10.2 最优化理论基础

10.2.1 二次规划

10.2.2 拉格朗日理论

10.2.3 二次规划的对偶

10.3 支持向量机

10.3.1 分类超平面的几何性质

10.3.2 线性可分支持向量机

10.3.3 近似线性可分支持向量机

10.3.4 非线性可分支持向量机

10.3.5 支持向量回归机

10.4 支持向量机的实现

10.4.1 LIBSVM软件包简介

10.4.2 LIBSVM使用方法

10.4.3 SVM在MATLAB中的实现

10.5 SVM在故障诊断中的应用

10.6 小结

习题

第11章 小波神经网络及应用

11.1 多尺度分析

11.2 小波变换

11.3 小波包变换

11.4 小波分析在信号处理中的应用

11.4.1 信号奇异点检测仿真

11.4.2 信号消噪仿真

11.5 小波神经网络

11.6 小波神经网络在电缆故障识别中的应用

11.6.1 小波变换提取特征

11.6.2 小波神经网络结构设计

11.6.3 电缆故障识别仿真

11.7 小结

习题

参考文献

 
 
 
免责声明:本文为网络用户发布,其观点仅代表作者个人观点,与本站无关,本站仅提供信息存储服务。文中陈述内容未经本站证实,其真实性、完整性、及时性本站不作任何保证或承诺,请读者仅作参考,并请自行核实相关内容。
2023年上半年GDP全球前十五强
 百态   2023-10-24
美众议院议长启动对拜登的弹劾调查
 百态   2023-09-13
上海、济南、武汉等多地出现不明坠落物
 探索   2023-09-06
印度或要将国名改为“巴拉特”
 百态   2023-09-06
男子为女友送行,买票不登机被捕
 百态   2023-08-20
手机地震预警功能怎么开?
 干货   2023-08-06
女子4年卖2套房花700多万做美容:不但没变美脸,面部还出现变形
 百态   2023-08-04
住户一楼被水淹 还冲来8头猪
 百态   2023-07-31
女子体内爬出大量瓜子状活虫
 百态   2023-07-25
地球连续35年收到神秘规律性信号,网友:不要回答!
 探索   2023-07-21
全球镓价格本周大涨27%
 探索   2023-07-09
钱都流向了那些不缺钱的人,苦都留给了能吃苦的人
 探索   2023-07-02
倩女手游刀客魅者强控制(强混乱强眩晕强睡眠)和对应控制抗性的关系
 百态   2020-08-20
美国5月9日最新疫情:美国确诊人数突破131万
 百态   2020-05-09
荷兰政府宣布将集体辞职
 干货   2020-04-30
倩女幽魂手游师徒任务情义春秋猜成语答案逍遥观:鹏程万里
 干货   2019-11-12
倩女幽魂手游师徒任务情义春秋猜成语答案神机营:射石饮羽
 干货   2019-11-12
倩女幽魂手游师徒任务情义春秋猜成语答案昆仑山:拔刀相助
 干货   2019-11-12
倩女幽魂手游师徒任务情义春秋猜成语答案天工阁:鬼斧神工
 干货   2019-11-12
倩女幽魂手游师徒任务情义春秋猜成语答案丝路古道:单枪匹马
 干货   2019-11-12
倩女幽魂手游师徒任务情义春秋猜成语答案镇郊荒野:与虎谋皮
 干货   2019-11-12
倩女幽魂手游师徒任务情义春秋猜成语答案镇郊荒野:李代桃僵
 干货   2019-11-12
倩女幽魂手游师徒任务情义春秋猜成语答案镇郊荒野:指鹿为马
 干货   2019-11-12
倩女幽魂手游师徒任务情义春秋猜成语答案金陵:小鸟依人
 干货   2019-11-12
倩女幽魂手游师徒任务情义春秋猜成语答案金陵:千金买邻
 干货   2019-11-12
 
推荐阅读
 
 
 
>>返回首頁<<
 
靜靜地坐在廢墟上,四周的荒凉一望無際,忽然覺得,淒涼也很美
© 2005- 王朝網路 版權所有