曲面纤维化

王朝百科·作者佚名  2010-01-11
窄屏简体版  字體: |||超大  

曲面纤维化是代数几何中的重要课题。

设S是光滑代数曲面,C是光滑代数曲线.

如果存在一个全纯的满态射f:S→C,那么就称S有一个到的C纤维化。

C上每一点在f下的原像都称为f的纤维,通常用F表示。F显然是一条代数曲线。 任何两条纤维都不相交,并且数值等价--这就是所谓的Zariski引理的特殊情形。

如果一条纤维F不是光滑的既约曲线,就称为奇异纤维,它在f下的像称为C上的临界点。 显见C上的临界点至多只有有限个。 换句话说,f的大多数纤维是光滑曲线;由Zariski引理,它们的亏格是相同的,记为g. 这个数值不变量g被称为纤维f的亏格。

奇异纤维包含了大量的信息,是我们最感兴趣的对象。 如果f:S→C的所有纤维都光滑,那么就称f是Kodaira(小平邦彦,日本数学家,菲尔兹奖得主)纤维化。

纤维化的亏格是研究的一个主要依据。 g=0时就称f为直纹面;g=1称为椭圆纤维;g=2是最简单的超椭圆纤维化,这方面Horikawa(崛川寅二,日本数学家)和肖刚等人做了大量杰出的工作。

对高亏格以及高维数的纤维化,仍然有许多东西值得挖掘。 许多数学家都在从事这一研究,比如肖刚、谈胜利,陈志杰,Catanese, Viehweg, 左康,Ashikaga,Konno...

 
 
 
免责声明:本文为网络用户发布,其观点仅代表作者个人观点,与本站无关,本站仅提供信息存储服务。文中陈述内容未经本站证实,其真实性、完整性、及时性本站不作任何保证或承诺,请读者仅作参考,并请自行核实相关内容。
 
 
© 2005- 王朝網路 版權所有 導航