数学分析(Mathematical Analysis)是数学专业的必修课程之一,基本内容是微积分,但是与微积分有很大的差别。
微积分学是微分学(Differential Calculus)和积分学(Integral Caculus)的统称,英语简称Calculus,意为计算,这是因为早期微积分主要用于天文、力学、几何中的计算问题。后来人们也将微积分学称为分析学(Analysis),或称无穷小分析,专指运用无穷小或无穷大等极限过程分析处理计算问题的学问。
早期的微积分,由于无法对无穷小概念作出令人信服的解释,在很长的一段时间内得不到发展。柯西(Cauchy)和后来的魏尔斯特拉斯(weierstrass)完善了作为理论基础的极限理论,使微积分逐渐演变为逻辑严密的数学基础学科,被称为“
Mathematical Analysis”,中文译作“数学分析”。
数学分析的基础是实数理论。实数系最重要的特征是连续性,有了实数的连续性,才能讨论极限,连续,微分和积分。正是在讨论函数的各种极限运算的合法性的过程中,人们逐渐建立起严密的数学分析理论体系。
《数学分析》课程是一门面向数学类专业的基础课。学好数学分析(和高等代数)是学好其他后继数学课程如微分几何,微分方程,复变函数,实变函数与泛函分析,计算方法,概率论与数理统计等课的必备的基础。
作为数学系最重要的基础课之一,数学科学的逻辑性和历史继承性决定了数学分析在数学科学中举足轻重的地位,数学的许多新思想,新应用都源于这坚实的基础。数学分析出于对微积分在理论体系上的严格化和精确化,从而确立了在整个自然科学中的基础地位,并运用于自然科学的各个领域。同时,数学研究的主体是经过抽象后的对象,数学的思考方式有鲜明的特色,包括抽象化,逻辑推理,最优分析,符号运算等。这些知识和能力的培养需要通过系统、扎实而严格的基础教育来实现,数学分析课程正是其中最重要的一个环节。
我们立足于培养数学基础扎实,知识面宽广,具有创新意识、开拓精神和应用能力,符合新世纪要求的优秀人才。从人才培养的角度来讲,一个学生能否学好数学,很大程度上决定于他进大学伊始能否将《数学分析》这门课真正学到手。
本课程的目标是通过系统的学习与严格的训练,全面掌握数学分析的基本理论知识;培养严格的逻辑思维能力与推理论证能力;具备熟练的运算能力与技巧;提高建立数学模型,并应用微积分这一工具解决实际应用问题的能力。
微积分理论的产生离不开物理学,天文学,几何学等学科的发展,微积分理论从其产生之日起就显示了巨大的应用活力,所以在数学分析的教学中,应强化微积分与相邻学科之间的联系,强调应用背景,充实理论的应用性内容。数学分析的教学除体现本课程严格的逻辑体系外,也要反映现代数学的发展趋势,吸收和采用现代数学的思想观点与先进的处理方法,提高学生的数学修养。
图书信息书 名: 数学分析
作者:李胜宏
出版社:浙江大学出版社
出版时间: 2009-8-1
ISBN: 9787308068567
开本: 16开
定价: 38.00元
内容简介《数学分析》是针对有初等微积分基础的大学一年级和二年级的学生编写的,既可以作为教科书使用,也可以作为研究生入学考试和高等数学竞赛的培训教材。除此之外,此书对广大数学爱好者来说,也是一本实用性很强的参考书。全书共六章,主要内容包括实数理论、数列与无穷级数、连续性、黎曼与斯蒂尔切斯积分、一致连续性和广义积分。书中每一章均配有大量的例题和有一定难度的习题。目前市面上有各种版本的数学分析教材,且数学分析的内容基本成型,因而编写一本具有特色的教材并非易事。首先遇到的问题是材料的取舍和内容的编排。《数学分析》的读者具备初等微积分的基础,使得编书时合理选材更加重要。我们从实数理论入手,选取重要的且能培养和提高读者逻辑推理能力的结构和定理作为《数学分析》的重要内容。例如数列与级数,一致收敛性和广义积分等,尽量做到所选内容是数学分析的核心问题,避免出现后继课程将要讨论的课题。与一般数学分析教材不同的是,《数学分析》可作为研究生入学考试的辅导教材和大学生高等数学竞赛的培训教材,对一般数学分析教材中的内容作了推广和加深,并精选了部分富有启发性的例题和有一定难度的习题供读者练习。独立完成部分或全部习题,是读者检验自己推理能力和提高学习效率的重要途径,通过练习,可以加深对教材主要内容的理解和掌握。
图书目录第一章实数系
1.1整数
1.2有理数系
1.3有理数数列
1.4实数系
1.5无限小数方法简介
1.6戴德金分划简介
1.7确界原理与实指数的乘幂
1.8实数的完备性和紧性
1.9实数的扩张——复数
练习
第二章数列与级数
2.1数列的极限
2.2斯铎兹定理及应用
2.3上、下极限
2.4实数级数
2.5无穷乘积
2.6典型例子
练习二
第三章连续性
3.1函数的极限和连续
3.2拓扑学初步
3.3连续函数的性质
3.4间断点
3.5半连续和有界变差函数
3.6p进制
练习三
第四章微分与积分
4.1微分与中值定理
4.2洛必达法则与泰勒公式
4.3典型例题选讲
4.4黎曼一斯蒂尔切斯积分
4.5不等式
4.6凸函数
4.7数e和7c
4.8多元函数
练习四
第五章一致收敛性
5.1函数序列的一致收敛性
5.2收敛序列的性质
5.3函数项级数及收敛性
5.4多项式逼近
5.5幂级数
5.6傅里叶级数
5.7等度连续性
练习五
第六章广义积分
6.1无限区间上的积分
6.2收敛性判别准则
6.3瑕积分
6.4广义积分与级数
6.5有限区间上含参量积分
6.6含参变量的广义积分
6.7一致收敛积分的性质
6.8欧拉积分
练习六
参考书目