1数字图像处理技术是一个跨学科的领域。随着计算机科学技术的不断发展,图像处理和分析逐渐形成了自己的科学体系,新的处理方法层出不穷,尽管其发展历史不长,但却引起各方面人士的广泛关注。首先,视觉是人类最重要的感知手段,图像又是视觉的基础,因此,数字图像成为心理学、生理学、计算机科学等诸多领域内的学者们研究视觉感知的有效工具。其次,图像处理在军事、遥感、气象等大型应用中有不断增长的需求。
基于图论的图像分割技术是近年来国际上图像分割领域的一个新的研究热点。该方法将图像映射为带权无向图,把像素视作节点。利用最小剪切准则得到图像的最佳分割 该方法本质上将图像分割问题转化为最优化问题。是一种点对聚类方法。对数据聚类也具有很好的应用前景。但由于其涉及的理论知识较多,应用也还处在初级阶段。因此国内这方面的研究报道并不多见,本文将对图论方法用于图像分割的基本理论进行简要介绍,并对当前图论方法用于图像分割的最新研究进展进行综述,并着重介绍基于等周图割的图像分割的方法。
2 图像目标分割与提取技术综述
图像分割是一种重要的图像技术,在理论研究和实际应用中都得到了人们的广泛重视。图像分割的方法和种类有很多,有些分割运算可直接应用于任何图像,而另一些只能适用于特殊类别的图像。有些算法需要先对图像进行粗分割,因为他们需要从图像中提取出来的信息。例如,可以对图像的灰度级设置门限的方法分割。值得提出的是,没有唯一的标准的分割方法。许多不同种类的图像或景物都可作为待分割的图像数据,不同类型的图像,已经有相对应的分割方法对其分割,同时,某些分割方法也只是适合于某些特殊类型的图像分割。分割结果的好坏需要根据具体的场合及要求衡量。图像分割是从图像处理到图像分析的关键步骤,可以说,图像分割结果的好坏直接影响对图像的理解。
3 定义及分割方法
为后续工作有效进行而将图像划分为若干个有意义的区域的技术称为图像分割(Image Segmentation)
早期的图像分割方法可以分为两大类。一类是边界方法,这种方法假设图像分割结果的某个子区域在原来图像中一定会有边缘存在;一类是区域方法,这种方法假设图像分割结果的某个子区域一定会有相同的性质,而不同区域的像素则没有共同的性质。这两种方法都有优点和缺点,有的学者考虑把两者结合起来进行研究。现在,随着计算机处理能力的提高,很多方法不断涌现,如基于彩色分量分割、纹理图像分割。所使用的数学工具和分析手段也是不断的扩展,从时域信号到频域信号处理,小波变换等等。
目前,有许多的图像分割方法,从分割操作策略上讲,可以分为基于区域生成的分割方法,基于边界检测的分割方法和区域生成与边界检测的混合方法.图像分割主要包括4种技术:并行边界分割技术、串行边界分割技术、并行区域分割技术和串行区域分割技术。