四面体数

王朝百科·作者佚名  2010-01-17
窄屏简体版  字體: |||超大  

四面体数或三角锥体数是可以排成底为三角形的锥体(即四面体)的数。四面体数每层为三角形数,其公式是首n个三角形数之和,即n(n + 1)(n + 2) / 6。其首几项为:1, 4, 10, 20, 35, 56, 84, 120...(OEIS:A000292)

四面体数的奇偶排列是“奇偶偶偶”。

1878年,A.J. Meyl证明只有3个四面体数同时为平方数:1, 4, 19600。唯一同时是四面体数和正方锥数的数是1(Beukers(1988))。

它们可以在杨辉三角每横行从右到左或左到右的第4项找到。

 
 
 
免责声明:本文为网络用户发布,其观点仅代表作者个人观点,与本站无关,本站仅提供信息存储服务。文中陈述内容未经本站证实,其真实性、完整性、及时性本站不作任何保证或承诺,请读者仅作参考,并请自行核实相关内容。
 
 
© 2005- 王朝網路 版權所有 導航