BP算法

王朝百科·作者佚名  2009-11-03
窄屏简体版  字體: |||超大  

误差反向传播(Error Back Propagation, BP)算法

1、BP算法的基本思想是,学习过程由信号的正向传播与误差的反向传播两个过程组成。

1)正向传播:输入样本->输入层->各隐层(处理)->输出层

注1:若输出层实际输出与期望输出(教师信号)不符,则转入2)(误差反向传播过程)

2)误差反向传播:输出误差(某种形式)->隐层(逐层)->输入层

其主要目的是通过将输出误差反传,将误差分摊给各层所有单元,从而获得各层单元的误差信号,进而修正各单元的权值(其过程,是一个权值调整的过程)。

注2:权值调整的过程,也就是网络的学习训练过程(学习也就是这么的由来,权值调整)。

2、BP算法实现步骤(软件):

1)初始化

2)输入训练样本对,计算各层输出

3)计算网络输出误差

4)计算各层误差信号

5)调整各层权值

6)检查网络总误差是否达到精度要求

满足,则训练结束;不满足,则返回步骤2)

3、多层感知器(基于BP算法)的主要能力:

1)非线性映射:足够多样本->学习训练

能学习和存储大量输入-输出模式映射关系。只要能提供足够多的样本模式对供BP网络进行学习训练,它便能完成由n维输入空间到m维输出空间的非线性映射。

2)泛化:输入新样本(训练是未有)->完成正确的输入、输出映射

3)容错:个别样本误差不能左右对权矩阵的调整

4、标准BP算法的缺陷:

1)易形成局部极小(属贪婪算法,局部最优)而得不到全局最优;

2)训练次数多使得学习效率低下,收敛速度慢(需做大量运算);

3)隐节点的选取缺乏理论支持;

4)训练时学习新样本有遗忘旧样本趋势。

注3:改进算法—增加动量项、自适应调整学习速率(这个似乎不错)及引入陡度因子

 
 
 
免责声明:本文为网络用户发布,其观点仅代表作者个人观点,与本站无关,本站仅提供信息存储服务。文中陈述内容未经本站证实,其真实性、完整性、及时性本站不作任何保证或承诺,请读者仅作参考,并请自行核实相关内容。
 
 
© 2005- 王朝網路 版權所有 導航