双线性插值

王朝百科·作者佚名  2010-01-18
窄屏简体版  字體: |||超大  

双线性插值,又称为双线性内插。在数学上,双线性插值是有两个变量的插值函数的线性插值扩展,其核心思想是在两个方向分别进行一次线性插值。

红色的数据点与待插值得到的绿色点

假如我们想得到未知函数f在点P= (x,y) 的值,假设我们已知函数f在Q11 = (x1,y1)、Q12 = (x1,y2),Q21 = (x2,y1) 以及Q22 = (x2,y2) 四个点的值。

首先在x方向进行线性插值,得到

然后在y方向进行线性插值,得到

这样就得到所要的结果f(x,y),

如果选择一个坐标系统使得f的四个已知点坐标分别为 (0, 0)、(0, 1)、(1, 0) 和 (1, 1),那么插值公式就可以化简为

或者用矩阵运算表示为

与这种插值方法名称不同的是,这种插值方法并不是线性的,它的形式是

它是两个线性函数的乘积。另外,插值也可以表示为

在这两种情况下,常数的数目]都对应于给定的f的数据点数目。

线性插值的结果与插值的顺序无关。首先进行y方向的插值,然后进行x方向的插值,所得到的结果是一样的。

双线性插值的一个显然的三维空间延伸是三线性插值。

 
 
 
免责声明:本文为网络用户发布,其观点仅代表作者个人观点,与本站无关,本站仅提供信息存储服务。文中陈述内容未经本站证实,其真实性、完整性、及时性本站不作任何保证或承诺,请读者仅作参考,并请自行核实相关内容。
 
 
© 2005- 王朝網路 版權所有 導航