全息存储是利用全息照相的技术原理来实现数据记录的。这一概念是Dennis Gabor在1984年为提高电子显微镜的分辨率而提出的。他的最大优点是超高密度,不仅如此,全息存储还具有极大的提升潜力,只要控制芯片具有足够强的数据处理能力,全息存储技术甚至可以提供高达1000TB的容量。相比之下,目前硬盘的最大容量才2TB,这个容量只相当于全息存储的“立方体糖块”的一个小碎片所提供的存储能力。
特点
1.存储容量大,可达TB级存储
2.记录速度快
3.信息不易丢失
4.可长期保存
5.便于复制
6.可记录立体影像
什么是全息存储技术?
读过高中物理知识的朋友,对于“全息照相”应该还有些印象吧?这种技术利用了人类掌握的激光技术,让用户拍摄出完整的三维影像成为可能,真实反映了拍摄物体的全部信息,而不是过去只体现物体一面的二维数据。在基础原理上,全息存储与全息照相完全相同,同样是利用了光的干涉原理。与其它存储技术不同,全息存储技术并不仅仅利用介质表面,它通过在整个存储介质内记录干涉图案来存储数据,这些干涉图案是由两束激光在某种晶体上相交来改变材料的光学特性所形成。
全息存储的运作原理
全息存储是受全息照相的启发而研制的,当你明白全息照相的技术原理,对于全息存储就可以更好地理解。我们在拍摄全息照片时,对应的拍摄设备并不是普通照相机,而是一台激光器。该激光器产生的激光束被分光镜一分为二,其中一束被命名为“物光束”,直接照射到被拍摄的物体,另一束则被称为“参考光束”,直接照射到感光胶片上。当物光束照射到所摄物体之后,形成的反射光束同样会照射到胶片上,此时物体的完整信息就能被胶片记录下来,全息照相的摄制过程就这样完成了。乍看过去,全息照片上只有一些乱七八糟的条纹,但当我们使用一束激光去照射这张照片时,真实的原始立体图像就会栩栩如生地展现出来。
全息存储技术同样需要激光束的帮忙,研发人员要为它配备一套高效率的全息照相系统。首先利用一束激光照射晶体内部不透明的小方格,记录成为原始图案后,再使用一束激光聚焦形成信号源,另外还需要一束参考激光作为校准。当信号源光束和参考光束在晶体中相遇后,晶体中就会展现出多折射角度的图案,这样在晶体中就形成了光栅。一个光栅可以储存一批数据,称为一页。我们把使用全息存储技术制成的存储器称为全息存储器,全息存储器在存储和读取数据时都是以页为单位。
全息存储的实现原理
理论归理论,但实际上能否实现?这一点大家完全不必担心。早些年美国奥勒冈大学曾经使用“钇铝石榴石”(一种可用于产生激光束的氧化铝合成晶石)作为记录材料进行全息存储实验,研究人员将1760位数据序列进行编码并输入激光束中,然后将它们成功地存储在晶体上,还进行了多次的反复读取,从而证明全息存储是可行的。
全息存储的技术优势
与目前的存储技术相比,全息存储在容量、速度和可靠性方面都极具发展潜力。由于全息存储器是以页作为读写单位,不同页面的数据可以同时并行读写,理论其存储速度将相当迅速。业界普遍估计,未来全息存储可以实现1GB/s的传输速度,以及小于1毫秒的随机访问时间!
使用全息存储技术后,一块方糖大小的立方体就能存储高达1TB的数据,这么高的容量并不是空穴来风。由于一个晶体有无数个面,我们只要改变激光束的入射角度,就可以在一块晶体中存储数量惊人的数据。打个形象的比喻,我们可以把全息存储器看成像书本一样,这也是其用小体积实现大容量的原理所在,理论上全息存储可以轻松突破1TB的存储密度!
与传统硬盘不一样,全息存储器不需要任何移动部件,数据读写操作为非接触式,使用寿命、数据可靠性、安全性都达到理想的状况。全息存储几乎可以永久保存数据,在切断电能供应的条件下,数据可在感光介质中保存数百年之久,这一点也远优于硬盘。
全息存储的发展现状
前不久,致力于研发全息存储技术的InPhase公司向公众展示了他们开发的全息存储驱动器以及全息存储碟片。根据InPhase公司介绍,这次推出的全息碟片存储密度达到了每平方英寸200GB,预计明年可以大规模投入量产。到2009年,他们的目标是达到1.6T!